Minimalus apsikeitimas reikalingas norint konvertuoti dvejetainį medį į dvejetainį paieškos medį

Minimalus apsikeitimas reikalingas norint konvertuoti dvejetainį medį į dvejetainį paieškos medį

Duotas masyvas arr[] kuri reiškia a Pilnas dvejetainis medis y. jei indeksas i yra tėvas indeksas 2*i + 1 yra paliktas vaikas ir indeksas 2*i + 2 yra teisingas vaikas. Užduotis yra surasti minimumas skaičius apsikeitimo sandoriais reikia konvertuoti į a Dvejetainis paieškos medis.

Pavyzdžiai:  

Įvestis: arr[] = [5 6 7 8 9 10 11]
Išvestis: 3
Paaiškinimas:
Duoto masyvo dvejetainis medis:

Minimalus apsikeitimo poreikis, norint konvertuoti dvejetainį medį į dvejetainį paieškos medį-1

1 apsikeitimas: sukeiskite 8 mazgą su 5 mazgu.
2 keitimas: sukeiskite 9 mazgą su 10 mazgu.
3 keitimas: sukeiskite 10 mazgą su 7 mazgu.

Taigi, norint gauti žemiau esantį dvejetainį paieškos medį, reikia atlikti mažiausiai 3 apsikeitimo sandorius:

Minimalus apsikeitimo poreikis, norint konvertuoti dvejetainį medį į dvejetainį paieškos medį-3


Įvestis: arr[] = [1 2 3]
Išvestis: 1
Paaiškinimas:
Duoto masyvo dvejetainis medis:

Minimalus apsikeitimo poreikis, norint konvertuoti dvejetainį medį į dvejetainį paieškos medį-2

Pakeitę 1 mazgą 2 mazgu, gaukite toliau pateiktą dvejetainės paieškos medį:

Minimalus apsikeitimo poreikis, norint konvertuoti dvejetainį medį į dvejetainį paieškos medį-4

Prieiga:

Idėja yra pasinaudoti tuo įsakymo perėjimas Dvejetainis paieškos medis yra didėja jų vertės tvarka. 
Taigi suraskite įsakymo perėjimas dvejetainio medžio ir saugokite jį masyve ir stengtis rūšiuoti masyvas. The minimalus apsikeitimo sandorių skaičius, reikalingas norint surūšiuoti masyvą bus atsakymas.

C++
   // C++ program for Minimum swap required   // to convert binary tree to binary search tree   #include       using     namespace     std  ;   // Function to perform inorder traversal of the binary tree   // and store it in vector v   void     inorder  (  vector   <  int  >&     arr       vector   <  int  >&     inorderArr       int     index  )     {          int     n     =     arr  .  size  ();          // If index is out of bounds return      if     (  index     >=     n  )      return  ;      // Recursively visit left subtree      inorder  (  arr       inorderArr       2     *     index     +     1  );          // Store current node value in vector      inorderArr  .  push_back  (  arr  [  index  ]);          // Recursively visit right subtree      inorder  (  arr       inorderArr       2     *     index     +     2  );   }   // Function to calculate minimum swaps    // to sort inorder traversal   int     minSwaps  (  vector   <  int  >&     arr  )     {      int     n     =     arr  .  size  ();      vector   <  int  >     inorderArr  ;          // Get the inorder traversal of the binary tree      inorder  (  arr       inorderArr       0  );          // Create an array of pairs to store value      // and original index      vector   <  pair   <  int       int  >>     t  (  inorderArr  .  size  ());      int     ans     =     0  ;          // Store the value and its index      for     (  int     i     =     0  ;     i      <     inorderArr  .  size  ();     i  ++  )      t  [  i  ]     =     {  inorderArr  [  i  ]     i  };          // Sort the pair array based on values       // to get BST order      sort  (  t  .  begin  ()     t  .  end  ());          // Find minimum swaps by detecting cycles      for     (  int     i     =     0  ;     i      <     t  .  size  ();     i  ++  )     {          // If the element is already in the       // correct position continue      if     (  i     ==     t  [  i  ].  second  )      continue  ;          // Otherwise perform swaps until the element      // is in the right place      else     {          // Swap elements to correct positions      swap  (  t  [  i  ].  first       t  [  t  [  i  ].  second  ].  first  );      swap  (  t  [  i  ].  second       t  [  t  [  i  ].  second  ].  second  );      }          // Check if the element is still not      // in the correct position      if     (  i     !=     t  [  i  ].  second  )      --  i  ;             // Increment swap count      ans  ++  ;      }          return     ans  ;   }   int     main  ()     {          vector   <  int  >     arr     =     {     5       6       7       8       9       10       11     };      cout      < <     minSwaps  (  arr  )      < <     endl  ;   }   
Java
   // Java program for Minimum swap required   // to convert binary tree to binary search tree   import     java.util.Arrays  ;   class   GfG     {          // Function to perform inorder traversal of the binary tree      // and store it in an array      static     void     inorder  (  int  []     arr       int  []     inorderArr           int     index       int  []     counter  )     {      int     n     =     arr  .  length  ;          // Base case: if index is out of bounds return      if     (  index     >=     n  )      return  ;          // Recursively visit left subtree      inorder  (  arr       inorderArr       2     *     index     +     1       counter  );          // Store current node value in the inorder array      inorderArr  [  counter  [  0  ]]     =     arr  [  index  ]  ;      counter  [  0  ]++  ;          // Recursively visit right subtree      inorder  (  arr       inorderArr       2     *     index     +     2       counter  );      }      // Function to calculate minimum swaps       // to sort inorder traversal      static     int     minSwaps  (  int  []     arr  )     {      int     n     =     arr  .  length  ;      int  []     inorderArr     =     new     int  [  n  ]  ;      int  []     counter     =     new     int  [  1  ]  ;          // Get the inorder traversal of the binary tree      inorder  (  arr       inorderArr       0       counter  );          // Create an array of pairs to store the value       // and its original index      int  [][]     t     =     new     int  [  n  ][  2  ]  ;      int     ans     =     0  ;          // Store the value and its original index      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      t  [  i  ][  0  ]     =     inorderArr  [  i  ]  ;      t  [  i  ][  1  ]     =     i  ;      }          // Sort the array based on values to get BST order      Arrays  .  sort  (  t       (  a       b  )     ->     Integer  .  compare  (  a  [  0  ]       b  [  0  ]  ));          // Find minimum swaps by detecting cycles      boolean  []     visited     =     new     boolean  [  n  ]  ;          // Iterate through the array to find cycles      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {          // If the element is already visited or in      // the correct place continue      if     (  visited  [  i  ]     ||     t  [  i  ][  1  ]     ==     i  )      continue  ;          // Start a cycle and find the number of      // nodes in the cycle      int     cycleSize     =     0  ;      int     j     =     i  ;          while     (  !  visited  [  j  ]  )     {      visited  [  j  ]     =     true  ;      j     =     t  [  j  ][  1  ]  ;      cycleSize  ++  ;      }          // If there is a cycle we need (cycleSize - 1)      // swaps to sort the cycle      if     (  cycleSize     >     1  )     {      ans     +=     (  cycleSize     -     1  );      }      }          // Return the total number of swaps      return     ans  ;      }      public     static     void     main  (  String  []     args  )     {      int  []     arr     =     {  5       6       7       8       9       10       11  };         System  .  out  .  println  (  minSwaps  (  arr  ));      }   }   
Python
   # Python program for Minimum swap required   # to convert binary tree to binary search tree   # Function to perform inorder traversal of the binary tree   # and store it in an array   def   inorder  (  arr     inorderArr     index  ):   # If index is out of bounds return   n   =   len  (  arr  )   if   index   >=   n  :   return   # Recursively visit left subtree   inorder  (  arr     inorderArr     2   *   index   +   1  )   # Store current node value in inorderArr   inorderArr  .  append  (  arr  [  index  ])   # Recursively visit right subtree   inorder  (  arr     inorderArr     2   *   index   +   2  )   # Function to calculate minimum swaps    # to sort inorder traversal   def   minSwaps  (  arr  ):   inorderArr   =   []   # Get the inorder traversal of the binary tree   inorder  (  arr     inorderArr     0  )   # Create a list of pairs to store value and original index   t   =   [(  inorderArr  [  i  ]   i  )   for   i   in   range  (  len  (  inorderArr  ))]   ans   =   0   # Sort the list of pairs based on values   # to get BST order   t  .  sort  ()   # Initialize visited array   visited   =   [  False  ]   *   len  (  t  )   # Find minimum swaps by detecting cycles   for   i   in   range  (  len  (  t  )):   # If already visited or already in the   # correct place skip   if   visited  [  i  ]   or   t  [  i  ][  1  ]   ==   i  :   continue   # Start a cycle and find the number of    # nodes in the cycle   cycleSize   =   0   j   =   i   # Process all elements in the cycle   while   not   visited  [  j  ]:   visited  [  j  ]   =   True   j   =   t  [  j  ][  1  ]   cycleSize   +=   1   # If there is a cycle of size `cycle_size` we    # need `cycle_size - 1` swaps   if   cycleSize   >   1  :   ans   +=   (  cycleSize   -   1  )   # Return total number of swaps   return   ans   if   __name__   ==   '__main__'  :   arr   =   [  5     6     7     8     9     10     11  ]   print  (  minSwaps  (  arr  ))   
C#
   // C# program for Minimum swap required   // to convert binary tree to binary search tree   using     System  ;   using     System.Linq  ;   class     GfG     {          // Function to perform inorder traversal of the binary tree      // and store it in an array      static     void     Inorder  (  int  []     arr       int  []     inorderArr       int     index       ref     int     counter  )     {      int     n     =     arr  .  Length  ;      // Base case: if index is out of bounds return      if     (  index     >=     n  )      return  ;      // Recursively visit left subtree      Inorder  (  arr       inorderArr       2     *     index     +     1       ref     counter  );      // Store current node value in inorderArr      inorderArr  [  counter  ]     =     arr  [  index  ];      counter  ++  ;      // Recursively visit right subtree      Inorder  (  arr       inorderArr       2     *     index     +     2       ref     counter  );      }      // Function to calculate minimum      // swaps to sort inorder traversal      static     int     MinSwaps  (  int  []     arr  )     {      int     n     =     arr  .  Length  ;      int  []     inorderArr     =     new     int  [  n  ];      int     counter     =     0  ;      // Get the inorder traversal of the binary tree      Inorder  (  arr       inorderArr       0       ref     counter  );      // Create an array of pairs to store value       // and original index      var     t     =     new     (  int       int  )[  n  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      t  [  i  ]     =     (  inorderArr  [  i  ]     i  );      }      // Sort the array based on values to get BST order      Array  .  Sort  (  t       (  a       b  )     =>     a  .  Item1  .  CompareTo  (  b  .  Item1  ));      // Initialize visited array      bool  []     visited     =     new     bool  [  n  ];      int     ans     =     0  ;      // Find minimum swaps by detecting cycles      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {          // If already visited or already in       // the correct place skip      if     (  visited  [  i  ]     ||     t  [  i  ].  Item2     ==     i  )      continue  ;      // Start a cycle and find the number       // of nodes in the cycle      int     cycleSize     =     0  ;      int     j     =     i  ;      // Process all elements in the cycle      while     (  !  visited  [  j  ])     {      visited  [  j  ]     =     true  ;      j     =     t  [  j  ].  Item2  ;      cycleSize  ++  ;      }      // If there is a cycle of size `cycle_size` we      // need `cycle_size - 1` swaps      if     (  cycleSize     >     1  )      {      ans     +=     (  cycleSize     -     1  );      }      }      // Return total number of swaps      return     ans  ;      }      static     void     Main  (  string  []     args  )     {          int  []     arr     =     {     5       6       7       8       9       10       11     };      Console  .  WriteLine  (  MinSwaps  (  arr  ));      }   }   
JavaScript
   // Javascript program for Minimum swap required   // to convert binary tree to binary search tree   // Inorder traversal to get values in sorted order   function     inorder  (  arr       inorderArr       index  )     {      // If index is out of bounds return      if     (  index     >=     arr  .  length  )      return  ;      // Recursively visit left subtree      inorder  (  arr       inorderArr       2     *     index     +     1  );      // Store current node value in array      inorderArr  .  push  (  arr  [  index  ]);      // Recursively visit right subtree      inorder  (  arr       inorderArr       2     *     index     +     2  );   }   // Function to calculate minimum swaps to sort inorder   // traversal   function     minSwaps  (  arr  )     {      let     inorderArr     =     [];      // Get the inorder traversal of the binary tree      inorder  (  arr       inorderArr       0  );      // Create an array of pairs to store value and original      // index      let     t     =     inorderArr  .  map  ((  val       i  )     =>     [  val       i  ]);      let     ans     =     0  ;      // Sort the pair array based on values to get BST order      t  .  sort  ((  a       b  )     =>     a  [  0  ]     -     b  [  0  ]);      // Find minimum swaps by detecting cycles      let     visited     =     Array  (  arr  .  length  )      .  fill  (  false  );      for     (  let     i     =     0  ;     i      <     t  .  length  ;     i  ++  )     {          // If the element is already in the correct      // position continue      if     (  visited  [  i  ]     ||     t  [  i  ][  1  ]     ===     i  )      continue  ;      // Otherwise perform swaps until the element is in      // the right place      let     cycleSize     =     0  ;      let     j     =     i  ;      while     (  !  visited  [  j  ])     {      visited  [  j  ]     =     true  ;      j     =     t  [  j  ][  1  ];      cycleSize  ++  ;      }      // If there is a cycle we need (cycleSize - 1)      // swaps to sort the cycle      if     (  cycleSize     >     1  )     {      ans     +=     (  cycleSize     -     1  );      }      }      // Return total number of swaps      return     ans  ;   }   let     arr     =     [     5       6       7       8       9       10       11     ];   console  .  log  (  minSwaps  (  arr  ));   

Išvestis
3  

Laiko sudėtingumas: O(n*logn) kur n yra elementų skaičius masyve.
Pagalbinė erdvė: O(n), nes ji naudoja papildomos vietos masyvei 

Pratimas: Ar galime tai išplėsti į įprastą dvejetainį medį, t. y. dvejetainį medį, pavaizduotą naudojant kairiąją ir dešiniąją rodykles ir nebūtinai baigtą?

Sukurti viktoriną