Ilgiausias įmanomas maršrutas matricoje su kliūtimis

Ilgiausias įmanomas maršrutas matricoje su kliūtimis
Išbandykite GfG praktikoje Ilgiausias įmanomas maršrutas matricoje su kliūtimis

Duota 2D dvejetainė matrica kartu su [][] kur kai kurios ląstelės yra kliūtys (žymima 0 ), o likusios yra laisvos ląstelės (žymimos 1 ) jūsų užduotis yra rasti ilgiausio įmanomo maršruto iš šaltinio langelio ilgį (xs ys) į paskirties langelį (xd yd) .

  • Galite pereiti tik į gretimus langelius (aukštyn žemyn į kairę į dešinę).
  • Įstrižiniai judesiai neleidžiami.
  • Vieną kartą aplankytas langelis negali būti pakartotinai aplankytas tame pačiame kelyje.
  • Jei neįmanoma pasiekti kelionės tikslo, grįžkite -1 .

Pavyzdžiai:
Įvestis: xs = 0 ys = 0 xd = 1 yd = 7
su[][] = [ [1 1 1 1 1 1 1 1 1 1]
[1 1 0 1 1 0 1 1 0 1]
[1 1 1 1 1 1 1 1 1 1] ]
Išvestis: 24
Paaiškinimas:

Įvestis: xs = 0 ys = 3 xd = 2 yd = 2
su [][] =[ [1 0 0 1 0]
[0 0 0 1 0]
[0 1 1 0 0] ]
Išvestis: -1
Paaiškinimas:
Matome, kad tai neįmanoma
pasiekti kamerą (22) iš (03).

Turinio lentelė

[Metodas] Atgalinio sekimo naudojimas su aplankyta matrica

Idėja yra naudoti Atsitraukimas . Pradedame nuo matricos šaltinio langelio, judame į priekį visomis keturiomis leidžiamomis kryptimis ir rekursyviai tikriname, ar jos veda į sprendimą, ar ne. Jei tikslas randamas, atnaujiname ilgiausio kelio reikšmę, kitaip, jei nė vienas iš aukščiau pateiktų sprendimų neveikia, iš savo funkcijos grąžiname false.

CPP
   #include          #include         #include         #include          using     namespace     std  ;   // Function to find the longest path using backtracking   int     dfs  (  vector   <  vector   <  int  >>     &  mat           vector   <  vector   <  bool  >>     &  visited       int     i           int     j       int     x       int     y  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||         mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ])     {      return     -1  ;         }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          int     maxPath     =     -1  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited           ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -1  )     {      maxPath     =     max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;   }   int     findLongestPath  (  vector   <  vector   <  int  >>     &  mat           int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -1  ;      }          vector   <  vector   <  bool  >>     visited  (  m       vector   <  bool  >  (  n       false  ));      return     dfs  (  mat       visited       xs       ys       xd       yd  );   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -1  )      cout      < <     result      < <     endl  ;      else      cout      < <     -1      < <     endl  ;          return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   GFG     {          // Function to find the longest path using backtracking      public     static     int     dfs  (  int  [][]     mat       boolean  [][]     visited        int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ]  )     {      return     -  1  ;     // Invalid path      }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       visited       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;      }          public     static     int     findLongestPath  (  int  [][]     mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -  1  ;      }          boolean  [][]     visited     =     new     boolean  [  m  ][  n  ]  ;      return     dfs  (  mat       visited       xs       ys       xd       yd  );      }          public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;      int     xd     =     1       yd     =     7  ;          int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      System  .  out  .  println  (  result  );      else      System  .  out  .  println  (  -  1  );      }   }   
Python
   # Function to find the longest path using backtracking   def   dfs  (  mat     visited     i     j     x     y  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # If destination is reached   if   i   ==   x   and   j   ==   y  :   return   0   # If cell is invalid blocked or already visited   if   i    <   0   or   i   >=   m   or   j    <   0   or   j   >=   n   or   mat  [  i  ][  j  ]   ==   0   or   visited  [  i  ][  j  ]:   return   -  1   # Invalid path   # Mark current cell as visited   visited  [  i  ][  j  ]   =   True   maxPath   =   -  1   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   pathLength   =   dfs  (  mat     visited     ni     nj     x     y  )   # If a valid path is found from this direction   if   pathLength   !=   -  1  :   maxPath   =   max  (  maxPath     1   +   pathLength  )   # Backtrack - unmark current cell   visited  [  i  ][  j  ]   =   False   return   maxPath   def   findLongestPath  (  mat     xs     ys     xd     yd  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # Check if source or destination is blocked   if   mat  [  xs  ][  ys  ]   ==   0   or   mat  [  xd  ][  yd  ]   ==   0  :   return   -  1   visited   =   [[  False   for   _   in   range  (  n  )]   for   _   in   range  (  m  )]   return   dfs  (  mat     visited     xs     ys     xd     yd  )   def   main  ():   mat   =   [   [  1     1     1     1     1     1     1     1     1     1  ]   [  1     1     0     1     1     0     1     1     0     1  ]   [  1     1     1     1     1     1     1     1     1     1  ]   ]   xs     ys   =   0     0   xd     yd   =   1     7   result   =   findLongestPath  (  mat     xs     ys     xd     yd  )   if   result   !=   -  1  :   print  (  result  )   else  :   print  (  -  1  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG   {      // Function to find the longest path using backtracking      static     int     dfs  (  int  []     mat       bool  []     visited           int     i       int     j       int     x       int     y  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )      {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i       j  ]     ==     0     ||     visited  [  i       j  ])      {      return     -  1  ;     // Invalid path      }          // Mark current cell as visited      visited  [  i       j  ]     =     true  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )      {      maxPath     =     Math  .  Max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i       j  ]     =     false  ;          return     maxPath  ;      }          static     int     FindLongestPath  (  int  []     mat       int     xs       int     ys       int     xd       int     yd  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // Check if source or destination is blocked      if     (  mat  [  xs       ys  ]     ==     0     ||     mat  [  xd       yd  ]     ==     0  )      {      return     -  1  ;      }          bool  []     visited     =     new     bool  [  m       n  ];      return     dfs  (  mat       visited       xs       ys       xd       yd  );      }          static     void     Main  ()      {      int  []     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     FindLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      Console  .  WriteLine  (  result  );      else      Console  .  WriteLine  (  -  1  );      }   }   
JavaScript
   // Function to find the longest path using backtracking   function     dfs  (  mat       visited       i       j       x       y  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // If destination is reached      if     (  i     ===     x     &&     j     ===     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||         mat  [  i  ][  j  ]     ===     0     ||     visited  [  i  ][  j  ])     {      return     -  1  ;         }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          let     maxPath     =     -  1  ;          // Four possible moves: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       visited           ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !==     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;   }   function     findLongestPath  (  mat       xs       ys       xd       yd  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ===     0     ||     mat  [  xd  ][  yd  ]     ===     0  )     {      return     -  1  ;      }          const     visited     =     Array  (  m  ).  fill  ().  map  (()     =>     Array  (  n  ).  fill  (  false  ));      return     dfs  (  mat       visited       xs       ys       xd       yd  );   }      const     mat     =     [      [  1       1       1       1       1       1       1       1       1       1  ]      [  1       1       0       1       1       0       1       1       0       1  ]      [  1       1       1       1       1       1       1       1       1       1  ]      ];          const     xs     =     0       ys     =     0  ;         const     xd     =     1       yd     =     7  ;             const     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !==     -  1  )      console  .  log  (  result  );      else      console  .  log  (  -  1  );   

Išvestis
24  

Laiko sudėtingumas: O(4^(m*n)) Kiekvienam m x n matricos langeliui algoritmas tiria iki keturių galimų krypčių (aukštyn žemyn į kairę į dešinę), vedančią į eksponentinį kelių skaičių. Blogiausiu atveju jis ištiria visus galimus kelius, todėl laiko sudėtingumas yra 4^(m*n).
Pagalbinė erdvė: O(m*n) Algoritmas naudoja m x n aplankytą matricą aplankytoms ląstelėms sekti ir rekursijos krūvą, kuri blogiausiu atveju gali išaugti iki m * n gylio (pvz., tyrinėjant kelią, apimantį visas ląsteles). Taigi pagalbinė erdvė yra O(m*n).

[Optimizuotas požiūris] Nenaudojant papildomos vietos

Užuot palaikę atskirą lankomą matricą, galime pakartotinai naudokite įvesties matricą pažymėti aplankytas ląsteles perėjimo metu. Taip sutaupoma papildomos vietos ir vis tiek užtikrinama, kad daugiau nekartosime to paties kelio langelio.

Žemiau pateikiamas žingsnis po žingsnio metodas:

  1. Pradėkite nuo šaltinio langelio (xs ys) .
  2. Kiekviename žingsnyje tyrinėkite visas keturias galimas kryptis (dešinėn žemyn, kairėn aukštyn).
  3. Už kiekvieną teisingą judėjimą:
    • Patikrinkite ribas ir įsitikinkite, kad langelis turi vertę 1 (laisva ląstelė).
    • Pažymėkite langelį kaip aplankytą laikinai nustatydami jį į 0 .
    • Pereikite į kitą langelį ir padidinkite kelio ilgį.
  4. Jei paskirties langelis (xd yd) pasiektas, palyginkite esamą kelio ilgį su maksimaliu iki šiol ir atnaujinkite atsakymą.
  5. Atgal: atkurti pradinę langelio vertę ( 1 ) prieš grįždami, kad kiti keliai galėtų jį ištirti.
  6. Tęskite tyrinėjimą, kol aplankysite visus įmanomus kelius.
  7. Grąžinkite maksimalų kelio ilgį. Jei kelionės tikslas nepasiekiamas, grįžkite -1
C++
   #include          #include         #include         #include          using     namespace     std  ;   // Function to find the longest path using backtracking without extra space   int     dfs  (  vector   <  vector   <  int  >>     &  mat       int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0  )     {      return     -1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          int     maxPath     =     -1  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -1  )     {      maxPath     =     max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;   }   int     findLongestPath  (  vector   <  vector   <  int  >>     &  mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -1  )      cout      < <     result      < <     endl  ;      else      cout      < <     -1      < <     endl  ;          return     0  ;   }   
Java
   public     class   GFG     {          // Function to find the longest path using backtracking without extra space      public     static     int     dfs  (  int  [][]     mat       int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0  )     {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;      }          public     static     int     findLongestPath  (  int  [][]     mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );      }          public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      System  .  out  .  println  (  result  );      else      System  .  out  .  println  (  -  1  );      }   }   
Python
   # Function to find the longest path using backtracking without extra space   def   dfs  (  mat     i     j     x     y  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # If destination is reached   if   i   ==   x   and   j   ==   y  :   return   0   # If cell is invalid or blocked (0 means blocked or visited)   if   i    <   0   or   i   >=   m   or   j    <   0   or   j   >=   n   or   mat  [  i  ][  j  ]   ==   0  :   return   -  1   # Mark current cell as visited by temporarily setting it to 0   mat  [  i  ][  j  ]   =   0   maxPath   =   -  1   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   pathLength   =   dfs  (  mat     ni     nj     x     y  )   # If a valid path is found from this direction   if   pathLength   !=   -  1  :   maxPath   =   max  (  maxPath     1   +   pathLength  )   # Backtrack - restore the cell's original value (1)   mat  [  i  ][  j  ]   =   1   return   maxPath   def   findLongestPath  (  mat     xs     ys     xd     yd  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # Check if source or destination is blocked   if   mat  [  xs  ][  ys  ]   ==   0   or   mat  [  xd  ][  yd  ]   ==   0  :   return   -  1   return   dfs  (  mat     xs     ys     xd     yd  )   def   main  ():   mat   =   [   [  1     1     1     1     1     1     1     1     1     1  ]   [  1     1     0     1     1     0     1     1     0     1  ]   [  1     1     1     1     1     1     1     1     1     1  ]   ]   xs     ys   =   0     0   xd     yd   =   1     7   result   =   findLongestPath  (  mat     xs     ys     xd     yd  )   if   result   !=   -  1  :   print  (  result  )   else  :   print  (  -  1  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG   {      // Function to find the longest path using backtracking without extra space      static     int     dfs  (  int  []     mat       int     i       int     j       int     x       int     y  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )      {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i       j  ]     ==     0  )      {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i       j  ]     =     0  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )      {      maxPath     =     Math  .  Max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i       j  ]     =     1  ;          return     maxPath  ;      }          static     int     FindLongestPath  (  int  []     mat       int     xs       int     ys       int     xd       int     yd  )      {      // Check if source or destination is blocked      if     (  mat  [  xs       ys  ]     ==     0     ||     mat  [  xd       yd  ]     ==     0  )      {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );      }          static     void     Main  ()      {      int  []     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     FindLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      Console  .  WriteLine  (  result  );      else      Console  .  WriteLine  (  -  1  );      }   }   
JavaScript
   // Function to find the longest path using backtracking without extra space   function     dfs  (  mat       i       j       x       y  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // If destination is reached      if     (  i     ===     x     &&     j     ===     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ===     0  )     {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          let     maxPath     =     -  1  ;          // Four possible moves: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !==     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;   }   function     findLongestPath  (  mat       xs       ys       xd       yd  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ===     0     ||     mat  [  xd  ][  yd  ]     ===     0  )     {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );   }      const     mat     =     [      [  1       1       1       1       1       1       1       1       1       1  ]      [  1       1       0       1       1       0       1       1       0       1  ]      [  1       1       1       1       1       1       1       1       1       1  ]      ];          const     xs     =     0       ys     =     0  ;         const     xd     =     1       yd     =     7  ;             const     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !==     -  1  )      console  .  log  (  result  );      else      console  .  log  (  -  1  );   

Išvestis
24  

Laiko sudėtingumas: O(4^(m*n))Algoritmas vis tiek tiria iki keturių krypčių viename m x n matricos langelyje, todėl gaunamas eksponentinis kelių skaičius. Modifikacija vietoje neturi įtakos ištirtų kelių skaičiui, todėl laiko sudėtingumas išlieka 4^(m*n).
Pagalbinė erdvė: O(m*n) Nors aplankyta matrica pašalinama modifikuojant įvesties matricą vietoje, rekursijos krūvai vis tiek reikia O(m*n) vietos, nes didžiausias rekursijos gylis gali būti m * n blogiausiu atveju (pvz., kelias, aplankantis visus tinklelio langelius, kuriuose daugiausia 1s).