Ciklas Rūšiuoti

Ciklas Rūšiuoti
Išbandykite „GfG Practice“. Ciklas Rūšiuoti

Ciklo rūšiavimas yra nestabilus rūšiavimo algoritmas, kuris ypač naudingas rūšiuojant masyvus, kuriuose yra elementų su nedideliu reikšmių diapazonu. Jį sukūrė W. D. Jonesas ir paskelbė 1963 m.

Pagrindinė ciklo rūšiavimo idėja yra padalinti įvesties masyvą į ciklus, kur kiekvieną ciklą sudaro elementai, priklausantys tai pačiai vietai surūšiuotame išvesties masyve. Tada algoritmas atlieka keletą apsikeitimų, kad kiekvienas elementas būtų tinkamoje ciklo vietoje, kol visi ciklai bus baigti ir masyvas bus surūšiuotas.

Štai žingsnis po žingsnio ciklo rūšiavimo algoritmo paaiškinimas:

  1. Pradėkite nuo nerūšiuoto n elementų masyvo.
  2. Inicijuoti kintamąjį cikląPradėkite nuo 0.
  3. Palyginkite kiekvieną masyvo elementą su kiekvienu kitu elementu dešinėje. Jei yra elementų, mažesnių už dabartinį elemento prieaugio ciklą Pradėti.
  4. Jei cycleStart vis dar yra 0, palyginus pirmąjį elementą su visais kitais elementais, pereikite prie kito elemento ir pakartokite 3 veiksmą.
  5. Kai randamas mažesnis elementas, pakeiskite esamą elementą su pirmuoju ciklo elementu. Tada ciklas tęsiamas tol, kol esamas elementas grįš į pradinę padėtį.

Kartokite 3–5 veiksmus, kol bus baigti visi ciklai.

Dabar masyvas surūšiuotas.

Vienas iš ciklo rūšiavimo pranašumų yra tas, kad jis turi mažai atminties, nes masyvas rūšiuojamas vietoje ir nereikalauja papildomos atminties laikiniesiems kintamiesiems ar buferiams. Tačiau tam tikrose situacijose tai gali būti lėta, ypač kai įvesties masyvas turi didelį reikšmių diapazoną. Nepaisant to, ciklo rūšiavimas išlieka naudingu rūšiavimo algoritmu tam tikruose kontekstuose, pavyzdžiui, rūšiuojant mažus masyvus su ribotais verčių diapazonais.

Ciklinis rūšiavimas yra rūšiavimo vietoje algoritmas nestabilus rūšiavimo algoritmas ir palyginimo rūšiavimas, kuris teoriškai yra optimalus pagal bendrą įrašų skaičių į pradinį masyvą. 
 

  • Jis yra optimalus atminties įrašų skaičiaus požiūriu. Tai sumažina atminties įrašų skaičių rūšiuoti (Kiekviena reikšmė rašoma nulį kartų, jei ji jau yra teisingoje padėtyje, arba parašyta vieną kartą į teisingą padėtį.)
  • Jis pagrįstas idėja, kad rūšiuojamą masyvą galima suskirstyti į ciklus. Ciklus galima vizualizuoti kaip grafiką. Turime n mazgų ir kraštą, nukreiptą iš mazgo i į mazgą j, jei i-ojo indekso elementas turi būti surūšiuoto masyvo j-ajame indekse. 
    Ciklas arr[] = {2 4 5 1 3} 
     
Ciklas RūšiuotiCiklas arr[] = {2 4 5 1 3}
  • Ciklas arr[] = {4 3 2 1} 
     
Ciklas arr[] = {4 3 2 1} 


Mes po vieną svarstome visus ciklus. Pirmiausia svarstome ciklą, kuriame yra pirmasis elementas. Surandame teisingą pirmojo elemento padėtį ir pastatome jį į teisingą vietą, tarkime j. Atsižvelgiame į senąją arr[j] reikšmę ir randame teisingą jos padėtį, tai darome tol, kol visi dabartinio ciklo elementai yra tinkamoje padėtyje, t. y. mes negrįžtame į ciklo pradžios tašką.

Pseudokodas:

 Begin   
for
start:= 0 to n - 2 do
key := array[start]
location := start
for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
if location = start then
ignore lower part go for next iteration
while key = array[location] do
location: = location + 1
done
if location != start then
swap array[location] with key
while location != start do
location start


for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
while key= array[location]
location := location +1
if key != array[location]
Swap array[location] and key
done
done
End

Paaiškinimas:  

  arr[] = {10 5 2 3}   
index = 0 1 2 3
cycle_start = 0
item = 10 = arr[0]

Find position where we put the item
pos = cycle_start
i=pos+1
while(i
if (arr[i] < item)
pos++;

We put 10 at arr[3] and change item to
old value of arr[3].
arr[] = {10 5 2 10 }
item = 3

Again rotate rest cycle that start with index '0'
Find position where we put the item = 3
we swap item with element at arr[1] now
arr[] = {10 3 2 10 }
item = 5

Again rotate rest cycle that start with index '0' and item = 5
we swap item with element at arr[2].
arr[] = {10 3 5 10 }
item = 2

Again rotate rest cycle that start with index '0' and item = 2
arr[] = { 2 3 5 10 }

Above is one iteration for cycle_stat = 0.
Repeat above steps for cycle_start = 1 2 ..n-2

Žemiau pateikiamas pirmiau minėto metodo įgyvendinimas:

CPP
   // C++ program to implement cycle sort   #include          using     namespace     std  ;   // Function sort the array using Cycle sort   void     cycleSort  (  int     arr  []     int     n  )   {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and put it to on      // the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )     {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ];      // Find position where we put the item. We basically      // count all smaller elements on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      swap  (  item       arr  [  pos  ]);      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      swap  (  item       arr  [  pos  ]);      writes  ++  ;      }      }      }      // Number of memory writes or swaps      // cout  < < writes  < < endl ;   }   // Driver program to test above function   int     main  ()   {      int     arr  []     =     {     1       8       3       9       10       10       2       4     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cycleSort  (  arr       n  );      cout      < <     'After sort : '      < <     endl  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      cout      < <     arr  [  i  ]      < <     ' '  ;      return     0  ;   }   
Java
   // Java program to implement cycle sort   import     java.util.*  ;   import     java.lang.*  ;   class   GFG     {      // Function sort the array using Cycle sort      public     static     void     cycleSort  (  int     arr  []       int     n  )      {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and put it to on      // the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )     {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ]  ;      // Find position where we put the item. We basically      // count all smaller elements on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ]  )      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ]  ;      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ]  )      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ]  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ]  ;      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }      // Driver program to test above function      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     1       8       3       9       10       10       2       4     };      int     n     =     arr  .  length  ;      cycleSort  (  arr       n  );      System  .  out  .  println  (  'After sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      System  .  out  .  print  (  arr  [  i  ]     +     ' '  );      }   }   // Code Contributed by Mohit Gupta_OMG  <(0_o)>   
Python3
   # Python program to implement cycle sort   def   cycleSort  (  array  ):   writes   =   0   # Loop through the array to find cycles to rotate.   for   cycleStart   in   range  (  0     len  (  array  )   -   1  ):   item   =   array  [  cycleStart  ]   # Find where to put the item.   pos   =   cycleStart   for   i   in   range  (  cycleStart   +   1     len  (  array  )):   if   array  [  i  ]    <   item  :   pos   +=   1   # If the item is already there this is not a cycle.   if   pos   ==   cycleStart  :   continue   # Otherwise put the item there or right after any duplicates.   while   item   ==   array  [  pos  ]:   pos   +=   1   array  [  pos  ]   item   =   item     array  [  pos  ]   writes   +=   1   # Rotate the rest of the cycle.   while   pos   !=   cycleStart  :   # Find where to put the item.   pos   =   cycleStart   for   i   in   range  (  cycleStart   +   1     len  (  array  )):   if   array  [  i  ]    <   item  :   pos   +=   1   # Put the item there or right after any duplicates.   while   item   ==   array  [  pos  ]:   pos   +=   1   array  [  pos  ]   item   =   item     array  [  pos  ]   writes   +=   1   return   writes   # driver code    arr   =   [  1     8     3     9     10     10     2     4   ]   n   =   len  (  arr  )   cycleSort  (  arr  )   print  (  'After sort : '  )   for   i   in   range  (  0     n  )   :   print  (  arr  [  i  ]   end   =   ' '  )   # Code Contributed by Mohit Gupta_OMG  <(0_o)>   
C#
   // C# program to implement cycle sort   using     System  ;   class     GFG     {          // Function sort the array using Cycle sort      public     static     void     cycleSort  (  int  []     arr       int     n  )      {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and       // put it to on the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )      {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ];      // Find position where we put the item.       // We basically count all smaller elements       // on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      int     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }      // Driver program to test above function      public     static     void     Main  ()      {      int  []     arr     =     {     1       8       3       9       10       10       2       4     };      int     n     =     arr  .  Length  ;          // Function calling      cycleSort  (  arr       n  );      Console  .  WriteLine  (  'After sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      Console  .  Write  (  arr  [  i  ]     +     ' '  );      }   }   // This code is contributed by Nitin Mittal   
JavaScript
    <  script  >   // Javascript program to implement cycle sort      // Function sort the array using Cycle sort      function     cycleSort  (  arr       n  )      {          // count number of memory writes      let     writes     =     0  ;          // traverse array elements and put it to on      // the right place      for     (  let     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )      {          // initialize item as starting point      let     item     =     arr  [  cycle_start  ];          // Find position where we put the item. We basically      // count all smaller elements on right side of item.      let     pos     =     cycle_start  ;      for     (  let     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;          // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;          // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;          // put the item to it's right position      if     (  pos     !=     cycle_start  )      {      let     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }          // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )      {      pos     =     cycle_start  ;          // Find position where we put the element      for     (  let     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;          // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;          // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      let     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }       // Driver code       let     arr     =     [     1       8       3       9       10       10       2       4     ];      let     n     =     arr  .  length  ;      cycleSort  (  arr       n  );          document  .  write  (  'After sort : '     +     '  
'
); for ( let i = 0 ; i < n ; i ++ ) document . write ( arr [ i ] + ' ' ); // This code is contributed by susmitakundugoaldanga. < /script>

Išvestis
After sort : 1 2 3 4 8 9 10 10  

Laiko sudėtingumo analizė

  • Blogiausias atvejis: O (n 2
  • Vidutinis atvejis: O (n 2
  • Geriausias atvejis: O (n 2 )

Pagalbinė erdvė: O(1)

  • Erdvės sudėtingumas yra pastovus, nes šis algoritmas yra įdiegtas, todėl rūšiavimui nenaudojama papildomos atminties.

2 būdas: Šis metodas taikomas tik tada, kai nurodytos masyvo reikšmės arba elementai yra diapazone nuo 1 iki N arba nuo 0 iki N. Taikant šį metodą masyvo pasukti nereikia

Prieiga: Visos nurodytos masyvo reikšmės turi būti nuo 1 iki N arba nuo 0 iki N. Jei diapazonas yra nuo 1 iki N, kiekvieno masyvo elemento teisinga padėtis bus indeksas == vertė-1, t.

lygiai taip pat 0–N reikšmėms teisinga kiekvieno masyvo elemento arba reikšmės indekso padėtis bus tokia pati kaip ir jo reikšmė, ty 0-ame indekse bus 0, ten bus 1-oji pozicija.

Paaiškinimas: 

 arr[] = {5 3 1 4 2}   
index = 0 1 2 3 4

i = 0;
while( i < arr.length)
correctposition = arr[i]-1;

find ith item correct position
for the first time i = 0 arr[0] = 5 correct index of 5 is 4 so arr[i] - 1 = 5-1 = 4


if( arr[i] <= arr.length && arr[i] != arr[correctposition])


arr[i] = 5 and arr[correctposition] = 4
so 5 <= 5 && 5 != 4 if condition true
now swap the 5 with 4


int temp = arr[i];
arr[i] = arr[correctposition];
arr[correctposition] = temp;

now resultant arr at this after 1st swap
arr[] = {2 3 1 4 5} now 5 is shifted at its correct position

now loop will run again check for i = 0 now arr[i] is = 2
after swapping 2 at its correct position
arr[] = {3 2 1 4 5}

now loop will run again check for i = 0 now arr[i] is = 3
after swapping 3 at its correct position
arr[] = {1 2 3 4 5}

now loop will run again check for i = 0 now arr[i] is = 1
this time 1 is at its correct position so else block will execute and i will increment i = 1;
once i exceeds the size of array will get array sorted.
arr[] = {1 2 3 4 5}


else

i++;
loop end;

once while loop end we get sorted array just print it
for( index = 0 ; index < arr.length; index++)
print(arr[index] + ' ')
sorted arr[] = {1 2 3 4 5}

Žemiau pateikiamas pirmiau minėto metodo įgyvendinimas:

C++
   #include          using     namespace     std  ;   void     cyclicSort  (  int     arr  []     int     n  ){      int     i     =     0  ;         while  (  i      <     n  )      {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correct     =     arr  [  i  ]     -     1     ;      if  (  arr  [  i  ]     !=     arr  [  correct  ]){      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr  [  i  ]     arr  [  correct  ])     ;      }  else  {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++     ;      }      }   }   void     printArray  (  int     arr  []     int     size  )   {      int     i  ;      for     (  i     =     0  ;     i      <     size  ;     i  ++  )      cout      < <     arr  [  i  ]      < <     ' '  ;      cout      < <     endl  ;   }   int     main  ()     {      int     arr  []     =     {     3       2       4       5       1  };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cout      < <     'Before sorting array:   n  '  ;      printArray  (  arr       n  );      cyclicSort  (  arr       n  );      cout      < <     'Sorted array:   n  '  ;      printArray  (  arr       n  );      return     0  ;   }   
Java
   // java program to check implement cycle sort   import     java.util.*  ;   public     class   MissingNumber     {      public     static     void     main  (  String  []     args  )      {      int  []     arr     =     {     3       2       4       5       1     };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  'Before sort :'  );      System  .  out  .  println  (  Arrays  .  toString  (  arr  ));      CycleSort  (  arr       n  );          }      static     void     CycleSort  (  int  []     arr       int     n  )      {      int     i     =     0  ;      while     (  i      <     n  )     {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correctpos     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]      <     n     &&     arr  [  i  ]     !=     arr  [  correctpos  ]  )     {      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr       i       correctpos  );      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }      System  .  out  .  println  (  'After sort : '  );      System  .  out  .  print  (  Arrays  .  toString  (  arr  ));              }      static     void     swap  (  int  []     arr       int     i       int     correctpos  )      {      // swap elements with their correct indexes      int     temp     =     arr  [  i  ]  ;      arr  [  i  ]     =     arr  [  correctpos  ]  ;      arr  [  correctpos  ]     =     temp  ;      }   }   // this code is contributed by devendra solunke   
Python
   # Python program to check implement cycle sort   def   cyclicSort  (  arr     n  ):   i   =   0   while   i    <   n  :   # as array is of 1 based indexing so the   # correct position or index number of each   # element is element-1 i.e. 1 will be at 0th   # index similarly 2 correct index will 1 so   # on...   correct   =   arr  [  i  ]   -   1   if   arr  [  i  ]   !=   arr  [  correct  ]:   # if array element should be lesser than   # size and array element should not be at   # its correct position then only swap with   # its correct position or index value   arr  [  i  ]   arr  [  correct  ]   =   arr  [  correct  ]   arr  [  i  ]   else  :   # if element is at its correct position   # just increment i and check for remaining   # array elements   i   +=   1   def   printArray  (  arr  ):   print  (  *  arr  )   arr   =   [  3     2     4     5     1  ]   n   =   len  (  arr  )   print  (  'Before sorting array:'  )   printArray  (  arr  )   # Function Call   cyclicSort  (  arr     n  )   print  (  'Sorted array:'  )   printArray  (  arr  )   # This Code is Contributed by Prasad Kandekar(prasad264)   
C#
   using     System  ;   public     class     GFG     {      static     void     CycleSort  (  int  []     arr       int     n  )      {      int     i     =     0  ;      while     (  i      <     n  )     {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correctpos     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]      <     n     &&     arr  [  i  ]     !=     arr  [  correctpos  ])     {      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr       i       correctpos  );      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }      Console  .  Write  (  'nAfter sort : '  );      for     (  int     index     =     0  ;     index      <     n  ;     index  ++  )      Console  .  Write  (  arr  [  index  ]     +     ' '  );      }      static     void     swap  (  int  []     arr       int     i       int     correctpos  )      {      // swap elements with their correct indexes      int     temp     =     arr  [  i  ];      arr  [  i  ]     =     arr  [  correctpos  ];      arr  [  correctpos  ]     =     temp  ;      }      static     public     void     Main  ()      {      // Code      int  []     arr     =     {     3       2       4       5       1     };      int     n     =     arr  .  Length  ;      Console  .  Write  (  'Before sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      Console  .  Write  (  arr  [  i  ]     +     ' '  );      CycleSort  (  arr       n  );      }   }   // This code is contributed by devendra solunke   
JavaScript
   // JavaScript code for the above code   function     cyclicSort  (  arr       n  )     {      var     i     =     0  ;      while     (  i      <     n  )      {          // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      let     correct     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]     !==     arr  [  correct  ])      {          // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      [  arr  [  i  ]     arr  [  correct  ]]     =     [  arr  [  correct  ]     arr  [  i  ]];      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }   }   function     printArray  (  arr       size  )     {      for     (  var     i     =     0  ;     i      <     size  ;     i  ++  )     {      console  .  log  (  arr  [  i  ]     +     ' '  );      }      console  .  log  (  'n'  );   }   var     arr     =     [  3       2       4       5       1  ];   var     n     =     arr  .  length  ;   console  .  log  (  'Before sorting array: n'  );   printArray  (  arr       n  );   cyclicSort  (  arr       n  );   console  .  log  (  'Sorted array: n'  );   printArray  (  arr       n  );   // This Code is Contributed by Prasad Kandekar(prasad264)   

Išvestis
Before sorting array: 3 2 4 5 1 Sorted array: 1 2 3 4 5  

Laiko sudėtingumo analizė:

  • Blogiausias atvejis: O(n) 
  • Vidutinis atvejis: O(n) 
  • Geriausias atvejis: O(n)

Pagalbinė erdvė: O(1)

Ciklo rūšiavimo pranašumas:

  1. Papildomos saugyklos nereikia.
  2.  rūšiavimo vietoje algoritmas.
  3.  Minimalus įrašų skaičius į atmintį
  4.  Ciklo rūšiavimas yra naudingas, kai masyvas saugomas EEPROM arba FLASH. 

Ciklo rūšiavimo trūkumas:

  1.  Jis dažniausiai nenaudojamas.
  2.  Jis turi daugiau laiko sudėtingumo o(n^2)
  3.  Nestabilus rūšiavimo algoritmas.

Ciklo rūšiavimo taikymas:

  • Šis rūšiavimo algoritmas geriausiai tinka tais atvejais, kai atminties įrašymo ar keitimo operacijos yra brangios.
  • Naudinga sudėtingoms problemoms spręsti. 
     
Sukurti viktoriną