Kombinatorinio žaidimo teorija | 4 rinkinys (Sprague - Grundy teorema)

Kombinatorinio žaidimo teorija | 4 rinkinys (Sprague - Grundy teorema)

Būtinos sąlygos: Grundy skaičiai/numeriai ir mex
Mes jau matėme 2 rinkinyje (https://www.geeksforgeeks.org/dsa/combinatoral-game-theory-set-2-game-nim/), kuriuos galime rasti, kas laimi NIM žaidimą, nežaidžiant žaidimo.
Tarkime, kad mes šiek tiek pakeisime klasikinį „Nim“ žaidimą. Šį kartą kiekvienas žaidėjas gali pašalinti tik 1 2 ar 3 akmenis (o ne bet kokį akmenų skaičių, kaip klasikiniame „Nim“ žaidime). Ar galime nuspėti, kas laimės?
Taip, mes galime numatyti nugalėtoją naudodami „Sprague-Grundy“ teoremą.

Kas yra „Sprague-Grundy“ teorema?  
Tarkime, kad yra sudėtinis žaidimas (daugiau nei vienas pogrupis), sudarytas iš N sub-žaidimų ir dviejų žaidėjų A ir B., tada „Sprague-Grundy“ teorema sako, kad jei ir A, ir B žaidžia optimaliai (t. Y. Jie nepadaro jokių klaidų), tada žaidėjas pradedamas pirmiausia, jei laimės, jei laimės „Grundy“ pozicijos skaičių kiekvieno pobūdžio žaidimuose žaidimo pradžioje, o ne „Zero“. Priešingu atveju, jei XOR įvertins iki nulio, žaidėjas A praras tikrai, nesvarbu.

Kaip pritaikyti „Sprague Grundy“ teoremą?  
Mes galime pritaikyti „Sprague-Grundy“ teoremą bet kurioje nešališkas žaidimas ir išspręsti. Pagrindiniai veiksmai yra išvardyti taip: 

  1. Suskirstykite kompozicinį žaidimą į „Subbames“.
  2. Tada kiekvienam pogrupiui apskaičiuokite Grundy numerį toje padėtyje.
  3. Tada apskaičiuokite visų apskaičiuotų Grundy skaičių XOR.
  4. Jei XOR vertė nėra lygi nuliui, tada žaidėjas, kuris ketina pasukti (pirmasis žaidėjas), laimės kitą, jam lemta prarasti, nesvarbu.

Žaidimo pavyzdys: Žaidimas prasideda nuo 3 polių, turinčių 3 4 ir 5 akmenis, o žaidėjas gali judėti, bet kokį teigiamą akmenų skaičių iki 3 iš bet kurio iš polių gali paimti teigiamą skaičių iki 3 iki 3 [su sąlyga, kad krūva turi tiek daug akmenų]. Laimės paskutinis žaidėjas. Kuris žaidėjas laimi žaidimą, darant prielaidą, kad abu žaidėjai žaidžia optimaliai?

Kaip pasakyti, kas laimės pritaikydamas „Sprague-Grundy“ teoremą?  
Kaip matome, kad šį žaidimą pats sudaro kelios pobūdžio. 
Pirmasis žingsnis: Pogrupiai gali būti laikomi kiekvienu polių. 
Antras žingsnis: Iš žemiau esančios lentelės matome 

Grundy(3) = 3 Grundy(4) = 0 Grundy(5) = 1  

Sprague - Grundy teorema

Mes jau matėme, kaip apskaičiuoti šio žaidimo grūdų numerius ankstesnis straipsnis.
Trečias žingsnis: 3 0 1 = 2 xor
Ketvirtas žingsnis: Kadangi XOR yra ne nulinis skaičius, todėl galime pasakyti, kad pirmasis žaidėjas laimės.

Žemiau yra programa, kuri įgyvendina virš 4 žingsnių. 

C++
   /* Game Description-    'A game is played between two players and there are N piles    of stones such that each pile has certain number of stones.    On his/her turn a player selects a pile and can take any    non-zero number of stones upto 3 (i.e- 123)    The player who cannot move is considered to lose the game    (i.e. one who take the last stone is the winner).    Can you find which player wins the game if both players play    optimally (they don't make any mistake)? '    A Dynamic Programming approach to calculate Grundy Number    and Mex and find the Winner using Sprague - Grundy Theorem. */   #include       using     namespace     std  ;   /* piles[] -> Array having the initial count of stones/coins    in each piles before the game has started.    n -> Number of piles    Grundy[] -> Array having the Grundy Number corresponding to    the initial position of each piles in the game    The piles[] and Grundy[] are having 0-based indexing*/   #define PLAYER1 1   #define PLAYER2 2   // A Function to calculate Mex of all the values in that set   int     calculateMex  (  unordered_set   <  int  >     Set  )   {      int     Mex     =     0  ;      while     (  Set  .  find  (  Mex  )     !=     Set  .  end  ())      Mex  ++  ;      return     (  Mex  );   }   // A function to Compute Grundy Number of 'n'   int     calculateGrundy  (  int     n       int     Grundy  [])   {      Grundy  [  0  ]     =     0  ;      Grundy  [  1  ]     =     1  ;      Grundy  [  2  ]     =     2  ;      Grundy  [  3  ]     =     3  ;      if     (  Grundy  [  n  ]     !=     -1  )      return     (  Grundy  [  n  ]);      unordered_set   <  int  >     Set  ;     // A Hash Table      for     (  int     i  =  1  ;     i   <=  3  ;     i  ++  )      Set  .  insert     (  calculateGrundy     (  n  -  i       Grundy  ));      // Store the result      Grundy  [  n  ]     =     calculateMex     (  Set  );      return     (  Grundy  [  n  ]);   }   // A function to declare the winner of the game   void     declareWinner  (  int     whoseTurn       int     piles  []      int     Grundy  []     int     n  )   {      int     xorValue     =     Grundy  [  piles  [  0  ]];      for     (  int     i  =  1  ;     i   <=  n  -1  ;     i  ++  )      xorValue     =     xorValue     ^     Grundy  [  piles  [  i  ]];      if     (  xorValue     !=     0  )      {      if     (  whoseTurn     ==     PLAYER1  )      printf  (  'Player 1 will win  n  '  );      else      printf  (  'Player 2 will win  n  '  );      }      else      {      if     (  whoseTurn     ==     PLAYER1  )      printf  (  'Player 2 will win  n  '  );      else      printf  (  'Player 1 will win  n  '  );      }      return  ;   }   // Driver program to test above functions   int     main  ()   {      // Test Case 1      int     piles  []     =     {  3       4       5  };      int     n     =     sizeof  (  piles  )  /  sizeof  (  piles  [  0  ]);      // Find the maximum element      int     maximum     =     *  max_element  (  piles       piles     +     n  );      // An array to cache the sub-problems so that      // re-computation of same sub-problems is avoided      int     Grundy  [  maximum     +     1  ];      memset  (  Grundy       -1       sizeof     (  Grundy  ));      // Calculate Grundy Value of piles[i] and store it      for     (  int     i  =  0  ;     i   <=  n  -1  ;     i  ++  )      calculateGrundy  (  piles  [  i  ]     Grundy  );      declareWinner  (  PLAYER1       piles       Grundy       n  );      /* Test Case 2    int piles[] = {3 8 2};    int n = sizeof(piles)/sizeof(piles[0]);    int maximum = *max_element (piles piles + n);    // An array to cache the sub-problems so that    // re-computation of same sub-problems is avoided    int Grundy [maximum + 1];    memset(Grundy -1 sizeof (Grundy));    // Calculate Grundy Value of piles[i] and store it    for (int i=0; i <=n-1; i++)    calculateGrundy(piles[i] Grundy);    declareWinner(PLAYER2 piles Grundy n); */      return     (  0  );   }   
Java
   import     java.util.*  ;   /* Game Description-   'A game is played between two players and there are N piles   of stones such that each pile has certain number of stones.   On his/her turn a player selects a pile and can take any   non-zero number of stones upto 3 (i.e- 123)   The player who cannot move is considered to lose the game   (i.e. one who take the last stone is the winner).   Can you find which player wins the game if both players play   optimally (they don't make any mistake)? '   A Dynamic Programming approach to calculate Grundy Number   and Mex and find the Winner using Sprague - Grundy Theorem. */   class   GFG     {       /* piles[] -> Array having the initial count of stones/coins    in each piles before the game has started.   n -> Number of piles   Grundy[] -> Array having the Grundy Number corresponding to    the initial position of each piles in the game   The piles[] and Grundy[] are having 0-based indexing*/   static     int     PLAYER1     =     1  ;   static     int     PLAYER2     =     2  ;   // A Function to calculate Mex of all the values in that set   static     int     calculateMex  (  HashSet   <  Integer  >     Set  )   {      int     Mex     =     0  ;      while     (  Set  .  contains  (  Mex  ))      Mex  ++  ;      return     (  Mex  );   }   // A function to Compute Grundy Number of 'n'   static     int     calculateGrundy  (  int     n       int     Grundy  []  )   {      Grundy  [  0  ]     =     0  ;      Grundy  [  1  ]     =     1  ;      Grundy  [  2  ]     =     2  ;      Grundy  [  3  ]     =     3  ;      if     (  Grundy  [  n  ]     !=     -  1  )      return     (  Grundy  [  n  ]  );      // A Hash Table      HashSet   <  Integer  >     Set     =     new     HashSet   <  Integer  >  ();         for     (  int     i     =     1  ;     i      <=     3  ;     i  ++  )      Set  .  add  (  calculateGrundy     (  n     -     i       Grundy  ));      // Store the result      Grundy  [  n  ]     =     calculateMex     (  Set  );      return     (  Grundy  [  n  ]  );   }   // A function to declare the winner of the game   static     void     declareWinner  (  int     whoseTurn       int     piles  []        int     Grundy  []       int     n  )   {      int     xorValue     =     Grundy  [  piles  [  0  ]]  ;      for     (  int     i     =     1  ;     i      <=     n     -     1  ;     i  ++  )      xorValue     =     xorValue     ^     Grundy  [  piles  [  i  ]]  ;      if     (  xorValue     !=     0  )      {      if     (  whoseTurn     ==     PLAYER1  )      System  .  out  .  printf  (  'Player 1 will winn'  );      else      System  .  out  .  printf  (  'Player 2 will winn'  );      }      else      {      if     (  whoseTurn     ==     PLAYER1  )      System  .  out  .  printf  (  'Player 2 will winn'  );      else      System  .  out  .  printf  (  'Player 1 will winn'  );      }      return  ;   }   // Driver code   public     static     void     main  (  String  []     args  )      {          // Test Case 1      int     piles  []     =     {  3       4       5  };      int     n     =     piles  .  length  ;      // Find the maximum element      int     maximum     =     Arrays  .  stream  (  piles  ).  max  ().  getAsInt  ();      // An array to cache the sub-problems so that      // re-computation of same sub-problems is avoided      int     Grundy  []     =     new     int  [  maximum     +     1  ]  ;      Arrays  .  fill  (  Grundy       -  1  );      // Calculate Grundy Value of piles[i] and store it      for     (  int     i     =     0  ;     i      <=     n     -     1  ;     i  ++  )      calculateGrundy  (  piles  [  i  ]       Grundy  );      declareWinner  (  PLAYER1       piles       Grundy       n  );      /* Test Case 2    int piles[] = {3 8 2};    int n = sizeof(piles)/sizeof(piles[0]);    int maximum = *max_element (piles piles + n);    // An array to cache the sub-problems so that    // re-computation of same sub-problems is avoided    int Grundy [maximum + 1];    memset(Grundy -1 sizeof (Grundy));    // Calculate Grundy Value of piles[i] and store it    for (int i=0; i <=n-1; i++)    calculateGrundy(piles[i] Grundy);    declareWinner(PLAYER2 piles Grundy n); */      }   }      // This code is contributed by PrinciRaj1992   
Python3
   ''' Game Description-     'A game is played between two players and there are N piles     of stones such that each pile has certain number of stones.     On his/her turn a player selects a pile and can take any     non-zero number of stones upto 3 (i.e- 123)     The player who cannot move is considered to lose the game     (i.e. one who take the last stone is the winner).     Can you find which player wins the game if both players play     optimally (they don't make any mistake)? '         A Dynamic Programming approach to calculate Grundy Number     and Mex and find the Winner using Sprague - Grundy Theorem.        piles[] -> Array having the initial count of stones/coins     in each piles before the game has started.     n -> Number of piles         Grundy[] -> Array having the Grundy Number corresponding to     the initial position of each piles in the game         The piles[] and Grundy[] are having 0-based indexing'''   PLAYER1   =   1   PLAYER2   =   2   # A Function to calculate Mex of all   # the values in that set    def   calculateMex  (  Set  ):   Mex   =   0  ;   while   (  Mex   in   Set  ):   Mex   +=   1   return   (  Mex  )   # A function to Compute Grundy Number of 'n'    def   calculateGrundy  (  n     Grundy  ):   Grundy  [  0  ]   =   0   Grundy  [  1  ]   =   1   Grundy  [  2  ]   =   2   Grundy  [  3  ]   =   3   if   (  Grundy  [  n  ]   !=   -  1  ):   return   (  Grundy  [  n  ])   # A Hash Table    Set   =   set  ()   for   i   in   range  (  1     4  ):   Set  .  add  (  calculateGrundy  (  n   -   i     Grundy  ))   # Store the result    Grundy  [  n  ]   =   calculateMex  (  Set  )   return   (  Grundy  [  n  ])   # A function to declare the winner of the game    def   declareWinner  (  whoseTurn     piles     Grundy     n  ):   xorValue   =   Grundy  [  piles  [  0  ]];   for   i   in   range  (  1     n  ):   xorValue   =   (  xorValue   ^   Grundy  [  piles  [  i  ]])   if   (  xorValue   !=   0  ):   if   (  whoseTurn   ==   PLAYER1  ):   print  (  'Player 1 will win  n  '  );   else  :   print  (  'Player 2 will win  n  '  );   else  :   if   (  whoseTurn   ==   PLAYER1  ):   print  (  'Player 2 will win  n  '  );   else  :   print  (  'Player 1 will win  n  '  );   # Driver code   if   __name__  ==  '__main__'  :   # Test Case 1    piles   =   [   3     4     5   ]   n   =   len  (  piles  )   # Find the maximum element    maximum   =   max  (  piles  )   # An array to cache the sub-problems so that    # re-computation of same sub-problems is avoided    Grundy   =   [  -  1   for   i   in   range  (  maximum   +   1  )];   # Calculate Grundy Value of piles[i] and store it    for   i   in   range  (  n  ):   calculateGrundy  (  piles  [  i  ]   Grundy  );   declareWinner  (  PLAYER1     piles     Grundy     n  );          ''' Test Case 2     int piles[] = {3 8 2};     int n = sizeof(piles)/sizeof(piles[0]);             int maximum = *max_element (piles piles + n);         // An array to cache the sub-problems so that     // re-computation of same sub-problems is avoided     int Grundy [maximum + 1];     memset(Grundy -1 sizeof (Grundy));         // Calculate Grundy Value of piles[i] and store it     for (int i=0; i <=n-1; i++)     calculateGrundy(piles[i] Grundy);         declareWinner(PLAYER2 piles Grundy n); '''   # This code is contributed by rutvik_56   
C#
   using     System  ;   using     System.Linq  ;   using     System.Collections.Generic  ;   /* Game Description-   'A game is played between two players and there are N piles   of stones such that each pile has certain number of stones.   On his/her turn a player selects a pile and can take any   non-zero number of stones upto 3 (i.e- 123)   The player who cannot move is considered to lose the game   (i.e. one who take the last stone is the winner).   Can you find which player wins the game if both players play   optimally (they don't make any mistake)? '   A Dynamic Programming approach to calculate Grundy Number   and Mex and find the Winner using Sprague - Grundy Theorem. */   class     GFG      {       /* piles[] -> Array having the initial count of stones/coins    in each piles before the game has started.   n -> Number of piles   Grundy[] -> Array having the Grundy Number corresponding to    the initial position of each piles in the game   The piles[] and Grundy[] are having 0-based indexing*/   static     int     PLAYER1     =     1  ;   //static int PLAYER2 = 2;   // A Function to calculate Mex of all the values in that set   static     int     calculateMex  (  HashSet   <  int  >     Set  )   {      int     Mex     =     0  ;      while     (  Set  .  Contains  (  Mex  ))      Mex  ++  ;      return     (  Mex  );   }   // A function to Compute Grundy Number of 'n'   static     int     calculateGrundy  (  int     n       int     []  Grundy  )   {      Grundy  [  0  ]     =     0  ;      Grundy  [  1  ]     =     1  ;      Grundy  [  2  ]     =     2  ;      Grundy  [  3  ]     =     3  ;      if     (  Grundy  [  n  ]     !=     -  1  )      return     (  Grundy  [  n  ]);      // A Hash Table      HashSet   <  int  >     Set     =     new     HashSet   <  int  >  ();         for     (  int     i     =     1  ;     i      <=     3  ;     i  ++  )      Set  .  Add  (  calculateGrundy     (  n     -     i       Grundy  ));      // Store the result      Grundy  [  n  ]     =     calculateMex     (  Set  );      return     (  Grundy  [  n  ]);   }   // A function to declare the winner of the game   static     void     declareWinner  (  int     whoseTurn       int     []  piles        int     []  Grundy       int     n  )   {      int     xorValue     =     Grundy  [  piles  [  0  ]];      for     (  int     i     =     1  ;     i      <=     n     -     1  ;     i  ++  )      xorValue     =     xorValue     ^     Grundy  [  piles  [  i  ]];      if     (  xorValue     !=     0  )      {      if     (  whoseTurn     ==     PLAYER1  )      Console  .  Write  (  'Player 1 will winn'  );      else      Console  .  Write  (  'Player 2 will winn'  );      }      else      {      if     (  whoseTurn     ==     PLAYER1  )      Console  .  Write  (  'Player 2 will winn'  );      else      Console  .  Write  (  'Player 1 will winn'  );      }      return  ;   }   // Driver code   static     void     Main  ()      {          // Test Case 1      int     []  piles     =     {  3       4       5  };      int     n     =     piles  .  Length  ;      // Find the maximum element      int     maximum     =     piles  .  Max  ();      // An array to cache the sub-problems so that      // re-computation of same sub-problems is avoided      int     []  Grundy     =     new     int  [  maximum     +     1  ];      Array  .  Fill  (  Grundy       -  1  );      // Calculate Grundy Value of piles[i] and store it      for     (  int     i     =     0  ;     i      <=     n     -     1  ;     i  ++  )      calculateGrundy  (  piles  [  i  ]     Grundy  );      declareWinner  (  PLAYER1       piles       Grundy       n  );          /* Test Case 2    int piles[] = {3 8 2};    int n = sizeof(piles)/sizeof(piles[0]);    int maximum = *max_element (piles piles + n);    // An array to cache the sub-problems so that    // re-computation of same sub-problems is avoided    int Grundy [maximum + 1];    memset(Grundy -1 sizeof (Grundy));    // Calculate Grundy Value of piles[i] and store it    for (int i=0; i <=n-1; i++)    calculateGrundy(piles[i] Grundy);    declareWinner(PLAYER2 piles Grundy n); */      }   }      // This code is contributed by mits   
JavaScript
    <  script  >   /* Game Description-   'A game is played between two players and there are N piles   of stones such that each pile has certain number of stones.   On his/her turn a player selects a pile and can take any   non-zero number of stones upto 3 (i.e- 123)   The player who cannot move is considered to lose the game   (i.e. one who take the last stone is the winner).   Can you find which player wins the game if both players play   optimally (they don't make any mistake)? '       A Dynamic Programming approach to calculate Grundy Number   and Mex and find the Winner using Sprague - Grundy Theorem. */   /* piles[] -> Array having the initial count of stones/coins    in each piles before the game has started.   n -> Number of piles       Grundy[] -> Array having the Grundy Number corresponding to    the initial position of each piles in the game       The piles[] and Grundy[] are having 0-based indexing*/   let     PLAYER1     =     1  ;   let     PLAYER2     =     2  ;   // A Function to calculate Mex of all the values in that set   function     calculateMex  (  Set  )   {      let     Mex     =     0  ;          while     (  Set  .  has  (  Mex  ))      Mex  ++  ;          return     (  Mex  );   }   // A function to Compute Grundy Number of 'n'   function     calculateGrundy  (  n    Grundy  )   {      Grundy  [  0  ]     =     0  ;      Grundy  [  1  ]     =     1  ;      Grundy  [  2  ]     =     2  ;      Grundy  [  3  ]     =     3  ;          if     (  Grundy  [  n  ]     !=     -  1  )      return     (  Grundy  [  n  ]);          // A Hash Table      let     Set     =     new     Set  ();          for     (  let     i     =     1  ;     i      <=     3  ;     i  ++  )      Set  .  add  (  calculateGrundy     (  n     -     i       Grundy  ));          // Store the result      Grundy  [  n  ]     =     calculateMex     (  Set  );          return     (  Grundy  [  n  ]);   }   // A function to declare the winner of the game   function     declareWinner  (  whoseTurn    piles    Grundy    n  )   {      let     xorValue     =     Grundy  [  piles  [  0  ]];          for     (  let     i     =     1  ;     i      <=     n     -     1  ;     i  ++  )      xorValue     =     xorValue     ^     Grundy  [  piles  [  i  ]];          if     (  xorValue     !=     0  )      {      if     (  whoseTurn     ==     PLAYER1  )      document  .  write  (  'Player 1 will win  
'
); else document . write ( 'Player 2 will win
'
); } else { if ( whoseTurn == PLAYER1 ) document . write ( 'Player 2 will win
'
); else document . write ( 'Player 1 will win
'
); } return ; } // Driver code // Test Case 1 let piles = [ 3 4 5 ]; let n = piles . length ; // Find the maximum element let maximum = Math . max (... piles ) // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided let Grundy = new Array ( maximum + 1 ); for ( let i = 0 ; i < maximum + 1 ; i ++ ) Grundy [ i ] = 0 ; // Calculate Grundy Value of piles[i] and store it for ( let i = 0 ; i <= n - 1 ; i ++ ) calculateGrundy ( piles [ i ] Grundy ); declareWinner ( PLAYER1 piles Grundy n ); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i <=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ // This code is contributed by avanitrachhadiya2155 < /script>

Išvestis:  

Player 1 will win 

Laiko sudėtingumas: O (n^2), kur n yra maksimalus akmenų skaičius krūvoje. 

Kosmoso sudėtingumas: O (n) Kadangi Grundy masyvas naudojamas subproblemų rezultatams saugoti, kad būtų išvengta nereikalingų skaičiavimų, ir jis užima o (n) erdvę.

Nuorodos:  
https://en.wikipedia.org/wiki/sprague%E2%80%93GRUNDY_THEOREM

Mankšta skaitytojams: Apsvarstykite žemiau pateiktą žaidimą. 
Žaidimą žaidžia du žaidėjai, turintys n sveikus skaičius A1 A2 .. an. Savo posūkyje žaidėjas pasirenka sveikąjį skaičių padalijus jį iš 2 3 arba 6, o tada paima grindis. Jei sveikasis skaičius tampa 0, jis pašalinamas. Laimės paskutinis žaidėjas. Kuris žaidėjas laimi žaidimą, jei abu žaidėjai žaidžia optimaliai?
Užuomina: žiūrėkite 3 pavyzdį ankstesnis straipsnis.