Dvejetainiai atsitiktiniai kintamieji

Dvejetainiai atsitiktiniai kintamieji

Šiame įraše aptarsime dvejetainius atsitiktinius kintamuosius.
Būtina sąlyga: Atsitiktiniai kintamieji 
Konkretus tipas diskretiškas atsitiktinis kintamasis, skaičiuojantis, kaip dažnai tam tikras įvykis įvyksta per tam tikrą skaičių bandymų ar bandymų. 
Kad kintamasis būtų binominis atsitiktinis kintamasis, turi būti įvykdytos VISOS šios sąlygos: 
 

  1. Yra nustatytas bandymų skaičius (fiksuotas imties dydis).
  2. Kiekvieno bandymo metu dominantis įvykis arba įvyksta, arba ne.
  3. Atsiradimo tikimybė (arba ne) kiekviename bandyme yra vienoda.
  4. Bandymai vienas nuo kito nepriklauso.


Matematiniai žymėjimai 
 

 n = number of trials   
p = probability of success in each trial
k = number of success in n trials


Dabar bandome išsiaiškinti k sėkmės tikimybę atliekant n bandymų.
Čia kiekvieno bandymo sėkmės tikimybė p nepriklauso nuo kitų bandymų. 
Taigi pirmiausia pasirenkame k bandymus, kuriuose bus sėkmė, o likusiuose n-k bandymuose bus nesėkmės. Būdų, kaip tai padaryti, skaičius yra 
 

Dvejetainiai atsitiktiniai kintamieji


Kadangi visi n įvykių yra nepriklausomi, k sėkmės tikimybė n bandymų yra lygi kiekvieno bandymo tikimybės padauginimui.
Čia jos k sėkmės ir n-k nesėkmių Taigi kiekvieno būdo pasiekti k sėkmės ir n-k nesėkmės tikimybė yra 
 

Dvejetainiai atsitiktiniai kintamieji


Taigi galutinė tikimybė yra 
 

 (number of ways to achieve k success   
and n-k failures)
*
(probability for each way to achieve k
success and n-k failure)


Tada dvinario atsitiktinio kintamojo tikimybė apskaičiuojama taip: 
 

Dvejetainiai atsitiktiniai kintamieji


Tegu X yra binominis atsitiktinis dydis, kurio bandymų skaičius n ir kiekvieno bandymo sėkmės tikimybė yra p. 
Tikėtiną sėkmės skaičių nurodo 
 

 E[X] = np  


Sėkmių skaičiaus dispersija pateikiama pagal 
 

 Var[X] = np(1-p)  


1 pavyzdys : Apsvarstykite atsitiktinį eksperimentą, kurio metu šališka moneta (galvos tikimybė = 1/3) metama 10 kartų. Raskite tikimybę, kad galvų skaičius bus 5.
Sprendimas: 
 

 Let X be binomial random variable    
with n = 10 and p = 1/3
P(X=5) = ? Dvejetainiai atsitiktiniai kintamieji
     Dvejetainiai atsitiktiniai kintamieji 
    

Čia yra to paties įgyvendinimas 
 

C++
   // C++ program to compute Binomial Probability   #include          #include         using     namespace     std  ;   // function to calculate nCr i.e. number of    // ways to choose r out of n objects   int     nCr  (  int     n       int     r  )   {      // Since nCr is same as nC(n-r)      // To decrease number of iterations      if     (  r     >     n     /     2  )      r     =     n     -     r  ;      int     answer     =     1  ;      for     (  int     i     =     1  ;     i      <=     r  ;     i  ++  )     {      answer     *=     (  n     -     r     +     i  );      answer     /=     i  ;      }      return     answer  ;   }   // function to calculate binomial r.v. probability   float     binomialProbability  (  int     n       int     k       float     p  )   {      return     nCr  (  n       k  )     *     pow  (  p       k  )     *      pow  (  1     -     p       n     -     k  );   }   // Driver code   int     main  ()   {      int     n     =     10  ;      int     k     =     5  ;      float     p     =     1.0     /     3  ;      float     probability     =     binomialProbability  (  n       k       p  );      cout      < <     'Probability of '      < <     k  ;      cout      < <     ' heads when a coin is tossed '      < <     n  ;      cout      < <     ' times where probability of each head is '      < <     p      < <     endl  ;      cout      < <     ' is = '      < <     probability      < <     endl  ;   }   
Java
   // Java program to compute Binomial Probability   import     java.util.*  ;   class   GFG   {      // function to calculate nCr i.e. number of       // ways to choose r out of n objects      static     int     nCr  (  int     n       int     r  )      {      // Since nCr is same as nC(n-r)      // To decrease number of iterations      if     (  r     >     n     /     2  )      r     =     n     -     r  ;          int     answer     =     1  ;      for     (  int     i     =     1  ;     i      <=     r  ;     i  ++  )     {      answer     *=     (  n     -     r     +     i  );      answer     /=     i  ;      }          return     answer  ;      }          // function to calculate binomial r.v. probability      static     float     binomialProbability  (  int     n       int     k       float     p  )      {      return     nCr  (  n       k  )     *     (  float  )  Math  .  pow  (  p       k  )     *         (  float  )  Math  .  pow  (  1     -     p       n     -     k  );      }          // Driver code      public     static     void     main  (  String  []     args  )      {      int     n     =     10  ;      int     k     =     5  ;      float     p     =     (  float  )  1.0     /     3  ;          float     probability     =     binomialProbability  (  n       k       p  );          System  .  out  .  print  (  'Probability of '     +  k  );      System  .  out  .  print  (  ' heads when a coin is tossed '     +  n  );      System  .  out  .  println  (  ' times where probability of each head is '     +  p  );      System  .  out  .  println  (     ' is = '     +     probability     );      }   }   /* This code is contributed by Mr. Somesh Awasthi */   
Python3
   # Python3 program to compute Binomial    # Probability   # function to calculate nCr i.e.   # number of ways to choose r out   # of n objects   def   nCr  (  n     r  ):   # Since nCr is same as nC(n-r)   # To decrease number of iterations   if   (  r   >   n   /   2  ):   r   =   n   -   r  ;   answer   =   1  ;   for   i   in   range  (  1     r   +   1  ):   answer   *=   (  n   -   r   +   i  );   answer   /=   i  ;   return   answer  ;   # function to calculate binomial r.v.   # probability   def   binomialProbability  (  n     k     p  ):   return   (  nCr  (  n     k  )   *   pow  (  p     k  )   *   pow  (  1   -   p     n   -   k  ));   # Driver code   n   =   10  ;   k   =   5  ;   p   =   1.0   /   3  ;   probability   =   binomialProbability  (  n     k     p  );   print  (  'Probability of'     k     'heads when a coin is tossed'     end   =   ' '  );   print  (  n     'times where probability of each head is'     round  (  p     6  ));   print  (  'is = '     round  (  probability     6  ));   # This code is contributed by mits   
C#
   // C# program to compute Binomial   // Probability.   using     System  ;   class     GFG     {          // function to calculate nCr      // i.e. number of ways to       // choose r out of n objects      static     int     nCr  (  int     n       int     r  )      {          // Since nCr is same as      // nC(n-r) To decrease       // number of iterations      if     (  r     >     n     /     2  )      r     =     n     -     r  ;          int     answer     =     1  ;      for     (  int     i     =     1  ;     i      <=     r  ;     i  ++  )      {      answer     *=     (  n     -     r     +     i  );      answer     /=     i  ;      }          return     answer  ;      }          // function to calculate binomial      // r.v. probability      static     float     binomialProbability  (      int     n       int     k       float     p  )      {      return     nCr  (  n       k  )     *         (  float  )  Math  .  Pow  (  p       k  )      *     (  float  )  Math  .  Pow  (  1     -     p        n     -     k  );      }          // Driver code      public     static     void     Main  ()      {      int     n     =     10  ;      int     k     =     5  ;      float     p     =     (  float  )  1.0     /     3  ;          float     probability     =         binomialProbability  (  n       k       p  );          Console  .  Write  (  'Probability of '      +     k  );      Console  .  Write  (  ' heads when a coin '      +     'is tossed '     +     n  );      Console  .  Write  (  ' times where '      +     'probability of each head is '      +     p  );      Console  .  Write  (     ' is = '      +     probability     );      }   }   // This code is contributed by nitin mittal.   
JavaScript
    <  script  >   // Javascript program to compute Binomial Probability      // function to calculate nCr i.e. number of       // ways to choose r out of n objects      function     nCr  (  n       r  )      {      // Since nCr is same as nC(n-r)      // To decrease number of iterations      if     (  r     >     n     /     2  )      r     =     n     -     r  ;          let     answer     =     1  ;      for     (  let     i     =     1  ;     i      <=     r  ;     i  ++  )     {      answer     *=     (  n     -     r     +     i  );      answer     /=     i  ;      }          return     answer  ;      }          // function to calculate binomial r.v. probability      function     binomialProbability  (  n       k       p  )      {      return     nCr  (  n       k  )     *     Math  .  pow  (  p       k  )     *         Math  .  pow  (  1     -     p       n     -     k  );      }       // driver program      let     n     =     10  ;      let     k     =     5  ;      let     p     =     1.0     /     3  ;          let     probability     =     binomialProbability  (  n       k       p  );          document  .  write  (  'Probability of '     +  k  );      document  .  write  (  ' heads when a coin is tossed '     +  n  );      document  .  write  (  ' times where probability of each head is '     +  p  );      document  .  write  (     ' is = '     +     probability     );          // This code is contributed by code_hunt.    <  /script>   
PHP
      // php program to compute Binomial    // Probability   // function to calculate nCr i.e.   // number of ways to choose r out   // of n objects   function   nCr  (  $n     $r  )   {   // Since nCr is same as nC(n-r)   // To decrease number of iterations   if   (  $r   >   $n   /   2  )   $r   =   $n   -   $r  ;   $answer   =   1  ;   for   (  $i   =   1  ;   $i    <=   $r  ;   $i  ++  )   {   $answer   *=   (  $n   -   $r   +   $i  );   $answer   /=   $i  ;   }   return   $answer  ;   }   // function to calculate binomial r.v.   // probability   function   binomialProbability  (  $n     $k     $p  )   {   return   nCr  (  $n     $k  )   *   pow  (  $p     $k  )   *   pow  (  1   -   $p     $n   -   $k  );   }   // Driver code   $n   =   10  ;   $k   =   5  ;   $p   =   1.0   /   3  ;   $probability   =   binomialProbability  (  $n     $k     $p  );   echo   'Probability of '   .   $k  ;   echo   ' heads when a coin is tossed '   .   $n  ;   echo   ' times where probability of '   .   'each head is '   .   $p   ;   echo   ' is = '   .   $probability   ;   // This code is contributed by nitin mittal.   ?>   

Išvestis:  
 

 Probability of 5 heads when a coin is tossed 10 times where probability of each head is 0.333333   
is = 0.136565


 

Sukurti viktoriną