이진 행렬의 모든 0에 대한 전체 적용 범위

이진 행렬의 모든 0에 대한 전체 적용 범위
GfG Practice에서 사용해 보세요. #practiceLinkDiv { 표시: 없음 !중요; }

0과 1만 포함하는 이진 행렬이 주어지면 특정 0에 대한 적용 범위는 왼쪽 오른쪽 위쪽 및 아래쪽 방향에서 0 주위의 1의 총 수로 정의되는 행렬의 모든 0에 대한 적용 범위의 합을 찾아야 합니다. 그것들은 한 방향의 모퉁이 지점까지 어디에나 있을 수 있습니다. 

예:  

Input : mat[][] = {0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0} Output : 20 First four zeros are surrounded by only one 1. So coverage for zeros in first row is 1 + 1 + 1 + 1 Zeros in second row are surrounded by three 1's. Note that there is no 1 above. There are 1's in all other three directions. Coverage of zeros in second row = 3 + 3. Similarly counting for others also we get overall count as below. 1 + 1 + 1 + 1 + 3 + 3 + 2 + 2 + 2 + 2 + 2 = 20 Input : mat[][] = {1 1 1 0 1 0 0 1} Output : 8 Coverage of first zero is 2 Coverages of other two zeros is 3 Total coverage = 2 + 3 + 3 = 8 
Recommended Practice 이진 행렬의 모든 0 범위 시도해 보세요!

에이 간단한 해결책 이 문제를 해결하려면 독립적으로 0 주위의 1을 계산해야 합니다. 즉, 주어진 행렬의 각 셀에 대해 각 방향으로 루프를 4번 실행합니다. 루프에서 1을 발견할 때마다 루프를 중단하고 결과를 1씩 증가시킵니다.

효율적인 솔루션 다음을 수행하는 것입니다. 

  1. 1이 이미 표시되고(현재 순회에서) 현재 요소가 0인 경우 왼쪽에서 오른쪽 증분 결과로 모든 행을 순회합니다.
  2. 현재 순회에서 1이 이미 표시되고 현재 요소가 0인 경우 모든 행을 오른쪽에서 왼쪽으로 순회합니다.
  3. 1이 이미 표시되고(현재 순회에서) 현재 요소가 0인 경우 위에서 아래 증분 결과로 모든 열을 순회합니다.
  4. 현재 순회에서 1이 이미 표시되고 현재 요소가 0인 경우 모든 열을 아래에서 위로 증가 결과로 순회합니다.

아래 코드에서는 부울 변수 isOne이 사용되며, 이는 최종 응답을 얻기 위해 네 방향 모두에 적용되는 하나의 동일한 절차에 의해 반복 결과가 증가된 후 모든 0에 대한 현재 순회에서 1이 발견되자마자 true가 됩니다. 매 순회 후에 isOne을 false로 재설정합니다.

C++
   // C++ program to get total coverage of all zeros in   // a binary matrix   #include          using     namespace     std  ;   #define R 4   #define C 4   // Returns total coverage of all zeros in mat[][]   int     getTotalCoverageOfMatrix  (  int     mat  [  R  ][  C  ])   {      int     res     =     0  ;      // looping for all rows of matrix      for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      bool     isOne     =     false  ;     // 1 is not seen yet      // looping in columns from left to right      // direction to get left ones      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      // If one is found from left      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      // If 0 is found and we have found      // a 1 before.      else     if     (  isOne  )      res  ++  ;      }      // Repeat the above process for right to      // left direction.      isOne     =     false  ;      for     (  int     j     =     C  -1  ;     j     >=     0  ;     j  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      // Traversing across columns for up and down      // directions.      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      bool     isOne     =     false  ;     // 1 is not seen yet      for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      isOne     =     false  ;      for     (  int     i     =     R  -1  ;     i     >=     0  ;     i  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      return     res  ;   }   // Driver code to test above methods   int     main  ()   {      int     mat  [  R  ][  C  ]     =     {{  0       0       0       0  }      {  1       0       0       1  }      {  0       1       1       0  }      {  0       1       0       0  }      };      cout      < <     getTotalCoverageOfMatrix  (  mat  );      return     0  ;   }   
Java
   // Java program to get total    // coverage of all zeros in    // a binary matrix   import     java     .  io  .  *  ;   class   GFG      {   static     int     R     =     4  ;   static     int     C     =     4  ;   // Returns total coverage   // of all zeros in mat[][]   static     int     getTotalCoverageOfMatrix  (  int     [][]  mat  )   {      int     res     =     0  ;      // looping for all       // rows of matrix      for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      // 1 is not seen yet      boolean     isOne     =     false  ;         // looping in columns from       // left to right direction      // to get left ones      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      // If one is found      // from left      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      // If 0 is found and we       // have found a 1 before.      else     if     (  isOne  )      res  ++  ;      }      // Repeat the above       // process for right       // to left direction.      isOne     =     false  ;      for     (  int     j     =     C     -     1  ;     j     >=     0  ;     j  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      // Traversing across columns      // for up and down directions.      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      // 1 is not seen yet      boolean     isOne     =     false  ;         for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      isOne     =     false  ;      for     (  int     i     =     R     -     1  ;     i     >=     0  ;     i  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      return     res  ;   }   // Driver code    static     public     void     main     (  String  []     args  )   {      int     [][]  mat     =     {{  0       0       0       0  }      {  1       0       0       1  }      {  0       1       1       0  }      {  0       1       0       0  }};   System  .  out  .  println  (      getTotalCoverageOfMatrix  (  mat  ));   }   }   // This code is contributed by anuj_67.   
Python3
   # Python3 program to get total coverage of all zeros in   # a binary matrix   R   =   4   C   =   4   # Returns total coverage of all zeros in mat[][]   def   getTotalCoverageOfMatrix  (  mat  ):   res   =   0   # looping for all rows of matrix   for   i   in   range  (  R  ):   isOne   =   False   # 1 is not seen yet   # looping in columns from left to right   # direction to get left ones   for   j   in   range  (  C  ):   # If one is found from left   if   (  mat  [  i  ][  j  ]   ==   1  ):   isOne   =   True   # If 0 is found and we have found   # a 1 before.   else   if   (  isOne  ):   res   +=   1   # Repeat the above process for right to   # left direction.   isOne   =   False   for   j   in   range  (  C   -   1     -  1     -  1  ):   if   (  mat  [  i  ][  j  ]   ==   1  ):   isOne   =   True   else   if   (  isOne  ):   res   +=   1   # Traversing across columns for up and down   # directions.   for   j   in   range  (  C  ):   isOne   =   False   # 1 is not seen yet   for   i   in   range  (  R  ):   if   (  mat  [  i  ][  j  ]   ==   1  ):   isOne   =   True   else   if   (  isOne  ):   res   +=   1   isOne   =   False   for   i   in   range  (  R   -   1     -  1     -  1  ):   if   (  mat  [  i  ][  j  ]   ==   1  ):   isOne   =   True   else   if   (  isOne  ):   res   +=   1   return   res   # Driver code   mat   =   [[  0     0     0     0  ][  1     0     0     1  ][  0     1     1     0  ][  0     1     0     0  ]]   print  (  getTotalCoverageOfMatrix  (  mat  ))   # This code is contributed by shubhamsingh10   
C#
   // C# program to get total coverage    // of all zeros in a binary matrix   using     System  ;   class     GFG     {       static     int     R     =     4  ;   static     int     C     =     4  ;   // Returns total coverage of all zeros in mat[][]   static     int     getTotalCoverageOfMatrix  (  int     []  mat  )   {      int     res     =     0  ;      // looping for all rows of matrix      for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      // 1 is not seen yet      bool     isOne     =     false  ;         // looping in columns from left to       // right direction to get left ones      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      // If one is found from left      if     (  mat  [  i    j  ]     ==     1  )      isOne     =     true  ;      // If 0 is found and we       // have found a 1 before.      else     if     (  isOne  )      res  ++  ;      }      // Repeat the above process for       // right to left direction.      isOne     =     false  ;      for     (  int     j     =     C  -  1  ;     j     >=     0  ;     j  --  )      {      if     (  mat  [  i    j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      // Traversing across columns      // for up and down directions.      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      // 1 is not seen yet      bool     isOne     =     false  ;         for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      if     (  mat  [  i    j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      isOne     =     false  ;      for     (  int     i     =     R  -  1  ;     i     >=     0  ;     i  --  )      {      if     (  mat  [  i    j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      return     res  ;   }   // Driver code to test above methods      static     public     void     Main     ()      {      int     []  mat     =     {{  0       0       0       0  }      {  1       0       0       1  }      {  0       1       1       0  }      {  0       1       0       0  }};      Console  .  WriteLine  (  getTotalCoverageOfMatrix  (  mat  ));      }   }   // This code is contributed by vt_m.   
JavaScript
    <  script  >      // Javascript program to get total       // coverage of all zeros in       // a binary matrix          let     R     =     4  ;      let     C     =     4  ;      // Returns total coverage      // of all zeros in mat[][]      function     getTotalCoverageOfMatrix  (  mat  )      {      let     res     =     0  ;      // looping for all       // rows of matrix      for     (  let     i     =     0  ;     i      <     R  ;     i  ++  )      {      // 1 is not seen yet      let     isOne     =     false  ;         // looping in columns from       // left to right direction      // to get left ones      for     (  let     j     =     0  ;     j      <     C  ;     j  ++  )      {      // If one is found      // from left      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      // If 0 is found and we       // have found a 1 before.      else     if     (  isOne  )      res  ++  ;      }      // Repeat the above       // process for right       // to left direction.      isOne     =     false  ;      for     (  let     j     =     C     -     1  ;     j     >=     0  ;     j  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      // Traversing across columns      // for up and down directions.      for     (  let     j     =     0  ;     j      <     C  ;     j  ++  )      {      // 1 is not seen yet      let     isOne     =     false  ;         for     (  let     i     =     0  ;     i      <     R  ;     i  ++  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      isOne     =     false  ;      for     (  let     i     =     R     -     1  ;     i     >=     0  ;     i  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      return     res  ;      }          let     mat     =     [[  0       0       0       0  ]      [  1       0       0       1  ]      [  0       1       1       0  ]      [  0       1       0       0  ]];          document  .  write  (  getTotalCoverageOfMatrix  (  mat  ));    <  /script>   

산출
20 

시간 복잡도: O(n 2
보조 공간: O(1)

 

퀴즈 만들기