스레드 이진 트리 | 삽입

스레드 이진 트리 | 삽입

우리는 이미 다음 사항에 대해 논의했습니다. 이진 스레드 이진 트리 .
이진 스레드 트리에 삽입하는 것은 이진 트리에 삽입하는 것과 유사하지만 각 요소를 삽입한 후 스레드를 조정해야 합니다.

바이너리 스레드 노드의 C 표현: 

struct Node { struct Node *left *right; int info; // false if left pointer points to predecessor // in Inorder Traversal boolean lthread; // false if right pointer points to successor // in Inorder Traversal boolean rthread; }; 

다음 설명에서 우리는 고려했습니다 이진 검색 트리(BST) 삽입은 BST의 일부 규칙에 의해 정의되므로 삽입용입니다.
허락하다 tmp는 새로 삽입된 노드입니다. . 삽입 중에는 세 가지 경우가 있을 수 있습니다.

사례 1: 빈 트리에 삽입  

tmp의 왼쪽 및 오른쪽 포인터는 모두 NULL로 설정되고 새 노드가 루트가 됩니다. 

root = tmp; tmp -> left = NULL; tmp -> right = NULL; 

사례 2: 새 노드가 왼쪽 자식으로 삽입된 경우  

노드를 적절한 위치에 삽입한 후 왼쪽 및 오른쪽 스레드가 각각 중위 선행자 및 후속자를 가리키도록 만들어야 합니다. 노드는 후임자 . 따라서 새 노드의 왼쪽 및 오른쪽 스레드는 다음과 같습니다. 

tmp -> left = par ->left; tmp -> right = par; 

삽입 전에는 부모의 왼쪽 포인터가 스레드였지만 삽입 후에는 새 노드를 가리키는 링크가 됩니다. 

par -> lthread = false; par -> left = temp; 

다음 예는 노드가 부모의 왼쪽 자식으로 삽입되는 것을 보여줍니다. 
 

스레드 이진 트리 | 삽입


13을 삽입한 후 
 

스레드 이진 트리 | 삽입


14의 선행자는 13의 선행자가 되므로 13점의 스레드가 10으로 남습니다. 
13의 후계자는 14이므로 13의 오른쪽 스레드는 왼쪽 자식인 13을 가리킵니다. 
14의 왼쪽 포인터는 스레드가 아니며 이제 13인 왼쪽 자식을 가리킵니다.

사례 3: 새 노드가 오른쪽 자식으로 삽입되는 경우  

tmp의 부모는 그 중위 전임자입니다. 상위 노드의 하위 후속 노드였던 노드는 이제 이 노드 tmp의 하위 후속 노드가 됩니다. 따라서 새 노드의 왼쪽 및 오른쪽 스레드는 다음과 같습니다. 

tmp -> left = par; tmp -> right = par -> right; 

삽입 전에는 상위의 오른쪽 포인터가 스레드였지만 삽입 후에는 새 노드를 가리키는 링크가 됩니다. 

par -> rthread = false; par -> right = tmp; 

다음 예에서는 노드가 해당 부모의 오른쪽 자식으로 삽입되는 것을 보여줍니다. 
 

스레드 이진 트리 | 삽입


15 삽입 후 
 

스레드 이진 트리 | 삽입


14의 후계자가 15의 후계자가 되므로 15점의 오른쪽 스레드가 16으로 됩니다. 
15의 선행자는 14이므로 15의 왼쪽 스레드는 14를 가리킵니다. 
14의 오른쪽 포인터는 스레드가 아니며 이제 15인 오른쪽 자식을 가리킵니다.

스레드 이진 검색 트리에 새 노드를 삽입하기 위한 C++ 구현:  
좋다 표준 BST 인서트 트리에서 키 값을 검색합니다. 키가 이미 있으면 반환하고, 그렇지 않으면 검색이 종료되는 지점에 새 키가 삽입됩니다. BST 검색에서는 키를 찾거나 왼쪽 또는 오른쪽 포인터가 NULL에 도달하면 종료됩니다. 여기서 모든 왼쪽 및 오른쪽 NULL 포인터는 첫 번째 노드의 왼쪽 포인터와 마지막 노드의 오른쪽 포인터를 제외하고 스레드로 대체됩니다. 따라서 여기서는 NULL 포인터나 스레드에 도달하면 검색이 실패합니다.

구현:

C++
   // Insertion in Threaded Binary Search Tree.   #include       using     namespace     std  ;   struct     Node   {      struct     Node     *  left       *  right  ;      int     info  ;      // False if left pointer points to predecessor      // in Inorder Traversal      bool     lthread  ;      // False if right pointer points to successor      // in Inorder Traversal      bool     rthread  ;   };   // Insert a Node in Binary Threaded Tree   struct     Node     *  insert  (  struct     Node     *  root       int     ikey  )   {      // Searching for a Node with given value      Node     *  ptr     =     root  ;      Node     *  par     =     NULL  ;     // Parent of key to be inserted      while     (  ptr     !=     NULL  )      {      // If key already exists return      if     (  ikey     ==     (  ptr  ->  info  ))      {      printf  (  'Duplicate Key !  n  '  );      return     root  ;      }      par     =     ptr  ;     // Update parent pointer      // Moving on left subtree.      if     (  ikey      <     ptr  ->  info  )      {      if     (  ptr     ->     lthread     ==     false  )      ptr     =     ptr     ->     left  ;      else      break  ;      }      // Moving on right subtree.      else      {      if     (  ptr  ->  rthread     ==     false  )      ptr     =     ptr     ->     right  ;      else      break  ;      }      }      // Create a new node      Node     *  tmp     =     new     Node  ;      tmp     ->     info     =     ikey  ;      tmp     ->     lthread     =     true  ;      tmp     ->     rthread     =     true  ;      if     (  par     ==     NULL  )      {      root     =     tmp  ;      tmp     ->     left     =     NULL  ;      tmp     ->     right     =     NULL  ;      }      else     if     (  ikey      <     (  par     ->     info  ))      {      tmp     ->     left     =     par     ->     left  ;      tmp     ->     right     =     par  ;      par     ->     lthread     =     false  ;      par     ->     left     =     tmp  ;      }      else      {      tmp     ->     left     =     par  ;      tmp     ->     right     =     par     ->     right  ;      par     ->     rthread     =     false  ;      par     ->     right     =     tmp  ;      }      return     root  ;   }   // Returns inorder successor using rthread   struct     Node     *  inorderSuccessor  (  struct     Node     *  ptr  )   {      // If rthread is set we can quickly find      if     (  ptr     ->     rthread     ==     true  )      return     ptr  ->  right  ;      // Else return leftmost child of right subtree      ptr     =     ptr     ->     right  ;      while     (  ptr     ->     lthread     ==     false  )      ptr     =     ptr     ->     left  ;      return     ptr  ;   }   // Printing the threaded tree   void     inorder  (  struct     Node     *  root  )   {      if     (  root     ==     NULL  )      printf  (  'Tree is empty'  );      // Reach leftmost node      struct     Node     *  ptr     =     root  ;      while     (  ptr     ->     lthread     ==     false  )      ptr     =     ptr     ->     left  ;      // One by one print successors      while     (  ptr     !=     NULL  )      {      printf  (  '%d '    ptr     ->     info  );      ptr     =     inorderSuccessor  (  ptr  );      }   }   // Driver Program   int     main  ()   {      struct     Node     *  root     =     NULL  ;      root     =     insert  (  root       20  );      root     =     insert  (  root       10  );      root     =     insert  (  root       30  );      root     =     insert  (  root       5  );      root     =     insert  (  root       16  );      root     =     insert  (  root       14  );      root     =     insert  (  root       17  );      root     =     insert  (  root       13  );      inorder  (  root  );      return     0  ;   }   
Java
   // Java program Insertion in Threaded Binary Search Tree.    import     java.util.*  ;   public     class   solution   {   static     class   Node      {         Node     left       right  ;         int     info  ;             // False if left pointer points to predecessor       // in Inorder Traversal       boolean     lthread  ;             // False if right pointer points to successor       // in Inorder Traversal       boolean     rthread  ;      };          // Insert a Node in Binary Threaded Tree    static     Node     insert  (     Node     root       int     ikey  )      {         // Searching for a Node with given value       Node     ptr     =     root  ;         Node     par     =     null  ;     // Parent of key to be inserted       while     (  ptr     !=     null  )         {         // If key already exists return       if     (  ikey     ==     (  ptr  .  info  ))         {         System  .  out  .  printf  (  'Duplicate Key !n'  );         return     root  ;         }             par     =     ptr  ;     // Update parent pointer           // Moving on left subtree.       if     (  ikey      <     ptr  .  info  )         {         if     (  ptr     .     lthread     ==     false  )         ptr     =     ptr     .     left  ;         else      break  ;         }             // Moving on right subtree.       else      {         if     (  ptr  .  rthread     ==     false  )         ptr     =     ptr     .     right  ;         else      break  ;         }         }             // Create a new node       Node     tmp     =     new     Node  ();         tmp     .     info     =     ikey  ;         tmp     .     lthread     =     true  ;         tmp     .     rthread     =     true  ;             if     (  par     ==     null  )         {         root     =     tmp  ;         tmp     .     left     =     null  ;         tmp     .     right     =     null  ;         }         else     if     (  ikey      <     (  par     .     info  ))         {         tmp     .     left     =     par     .     left  ;         tmp     .     right     =     par  ;         par     .     lthread     =     false  ;         par     .     left     =     tmp  ;         }         else      {         tmp     .     left     =     par  ;         tmp     .     right     =     par     .     right  ;         par     .     rthread     =     false  ;         par     .     right     =     tmp  ;         }             return     root  ;      }          // Returns inorder successor using rthread    static     Node     inorderSuccessor  (     Node     ptr  )      {         // If rthread is set we can quickly find       if     (  ptr     .     rthread     ==     true  )         return     ptr  .  right  ;             // Else return leftmost child of right subtree       ptr     =     ptr     .     right  ;         while     (  ptr     .     lthread     ==     false  )         ptr     =     ptr     .     left  ;         return     ptr  ;      }          // Printing the threaded tree    static     void     inorder  (     Node     root  )      {         if     (  root     ==     null  )         System  .  out  .  printf  (  'Tree is empty'  );             // Reach leftmost node       Node     ptr     =     root  ;         while     (  ptr     .     lthread     ==     false  )         ptr     =     ptr     .     left  ;             // One by one print successors       while     (  ptr     !=     null  )         {         System  .  out  .  printf  (  '%d '    ptr     .     info  );         ptr     =     inorderSuccessor  (  ptr  );         }      }          // Driver Program    public     static     void     main  (  String  []     args  )   {         Node     root     =     null  ;             root     =     insert  (  root       20  );         root     =     insert  (  root       10  );         root     =     insert  (  root       30  );         root     =     insert  (  root       5  );         root     =     insert  (  root       16  );         root     =     insert  (  root       14  );         root     =     insert  (  root       17  );         root     =     insert  (  root       13  );             inorder  (  root  );      }      }   //contributed by Arnab Kundu   // This code is updated By Susobhan Akhuli   
Python3
   # Insertion in Threaded Binary Search Tree.    class   newNode  :   def   __init__  (  self     key  ):   # False if left pointer points to    # predecessor in Inorder Traversal    self  .  info   =   key   self  .  left   =   None   self  .  right   =  None   self  .  lthread   =   True   # False if right pointer points to    # successor in Inorder Traversal    self  .  rthread   =   True   # Insert a Node in Binary Threaded Tree    def   insert  (  root     ikey  ):   # Searching for a Node with given value    ptr   =   root   par   =   None   # Parent of key to be inserted    while   ptr   !=   None  :   # If key already exists return    if   ikey   ==   (  ptr  .  info  ):   print  (  'Duplicate Key !'  )   return   root   par   =   ptr   # Update parent pointer    # Moving on left subtree.    if   ikey    <   ptr  .  info  :   if   ptr  .  lthread   ==   False  :   ptr   =   ptr  .  left   else  :   break   # Moving on right subtree.    else  :   if   ptr  .  rthread   ==   False  :   ptr   =   ptr  .  right   else  :   break   # Create a new node    tmp   =   newNode  (  ikey  )   if   par   ==   None  :   root   =   tmp   tmp  .  left   =   None   tmp  .  right   =   None   elif   ikey    <   (  par  .  info  ):   tmp  .  left   =   par  .  left   tmp  .  right   =   par   par  .  lthread   =   False   par  .  left   =   tmp   else  :   tmp  .  left   =   par   tmp  .  right   =   par  .  right   par  .  rthread   =   False   par  .  right   =   tmp   return   root   # Returns inorder successor using rthread    def   inorderSuccessor  (  ptr  ):   # If rthread is set we can quickly find    if   ptr  .  rthread   ==   True  :   return   ptr  .  right   # Else return leftmost child of    # right subtree    ptr   =   ptr  .  right   while   ptr  .  lthread   ==   False  :   ptr   =   ptr  .  left   return   ptr   # Printing the threaded tree    def   inorder  (  root  ):   if   root   ==   None  :   print  (  'Tree is empty'  )   # Reach leftmost node    ptr   =   root   while   ptr  .  lthread   ==   False  :   ptr   =   ptr  .  left   # One by one print successors    while   ptr   !=   None  :   print  (  ptr  .  info    end  =  ' '  )   ptr   =   inorderSuccessor  (  ptr  )   # Driver Code   if   __name__   ==   '__main__'  :   root   =   None   root   =   insert  (  root     20  )   root   =   insert  (  root     10  )   root   =   insert  (  root     30  )   root   =   insert  (  root     5  )   root   =   insert  (  root     16  )   root   =   insert  (  root     14  )   root   =   insert  (  root     17  )   root   =   insert  (  root     13  )   inorder  (  root  )   # This code is contributed by PranchalK   
C#
   using     System  ;   // C# program Insertion in Threaded Binary Search Tree.    public     class     solution   {   public     class     Node   {      public     Node     left       right  ;      public     int     info  ;      // False if left pointer points to predecessor       // in Inorder Traversal       public     bool     lthread  ;      // False if right pointer points to successor       // in Inorder Traversal       public     bool     rthread  ;   }   // Insert a Node in Binary Threaded Tree    public     static     Node     insert  (  Node     root       int     ikey  )   {      // Searching for a Node with given value       Node     ptr     =     root  ;      Node     par     =     null  ;     // Parent of key to be inserted      while     (  ptr     !=     null  )      {      // If key already exists return       if     (  ikey     ==     (  ptr  .  info  ))      {      Console  .  Write  (  'Duplicate Key !n'  );      return     root  ;      }      par     =     ptr  ;     // Update parent pointer      // Moving on left subtree.       if     (  ikey      <     ptr  .  info  )      {      if     (  ptr  .  lthread     ==     false  )      {      ptr     =     ptr  .  left  ;      }      else      {      break  ;      }      }      // Moving on right subtree.       else      {      if     (  ptr  .  rthread     ==     false  )      {      ptr     =     ptr  .  right  ;      }      else      {      break  ;      }      }      }      // Create a new node       Node     tmp     =     new     Node  ();      tmp  .  info     =     ikey  ;      tmp  .  lthread     =     true  ;      tmp  .  rthread     =     true  ;      if     (  par     ==     null  )      {      root     =     tmp  ;      tmp  .  left     =     null  ;      tmp  .  right     =     null  ;      }      else     if     (  ikey      <     (  par  .  info  ))      {      tmp  .  left     =     par  .  left  ;      tmp  .  right     =     par  ;      par  .  lthread     =     false  ;      par  .  left     =     tmp  ;      }      else      {      tmp  .  left     =     par  ;      tmp  .  right     =     par  .  right  ;      par  .  rthread     =     false  ;      par  .  right     =     tmp  ;      }      return     root  ;   }   // Returns inorder successor using rthread    public     static     Node     inorderSuccessor  (  Node     ptr  )   {      // If rthread is set we can quickly find       if     (  ptr  .  rthread     ==     true  )      {      return     ptr  .  right  ;      }      // Else return leftmost child of right subtree       ptr     =     ptr  .  right  ;      while     (  ptr  .  lthread     ==     false  )      {      ptr     =     ptr  .  left  ;      }      return     ptr  ;   }   // Printing the threaded tree    public     static     void     inorder  (  Node     root  )   {      if     (  root     ==     null  )      {      Console  .  Write  (  'Tree is empty'  );      }      // Reach leftmost node       Node     ptr     =     root  ;      while     (  ptr  .  lthread     ==     false  )      {      ptr     =     ptr  .  left  ;      }      // One by one print successors       while     (  ptr     !=     null  )      {      Console  .  Write  (  '{0:D} '    ptr  .  info  );      ptr     =     inorderSuccessor  (  ptr  );      }   }   // Driver Program    public     static     void     Main  (  string  []     args  )   {      Node     root     =     null  ;      root     =     insert  (  root       20  );      root     =     insert  (  root       10  );      root     =     insert  (  root       30  );      root     =     insert  (  root       5  );      root     =     insert  (  root       16  );      root     =     insert  (  root       14  );      root     =     insert  (  root       17  );      root     =     insert  (  root       13  );      inorder  (  root  );   }   }      // This code is contributed by Shrikant13   
JavaScript
    <  script  >   // javascript program Insertion in Threaded Binary Search Tree.       class     Node     {      constructor  (){   this  .  left     =     null       this  .  right     =     null  ;      this  .  info     =     0  ;      // False if left pointer points to predecessor      // in Inorder Traversal      this  .  lthread     =     false  ;      // False if right pointer points to successor      // in Inorder Traversal      this  .  rthread     =     false  ;      }      }      // Insert a Node in Binary Threaded Tree      function     insert  (  root          ikey  )     {      // Searching for a Node with given value   var     ptr     =     root  ;   var     par     =     null  ;     // Parent of key to be inserted      while     (  ptr     !=     null  )     {      // If key already exists return      if     (  ikey     ==     (  ptr  .  info  ))     {      document  .  write  (  'Duplicate Key !n'  );      return     root  ;      }      par     =     ptr  ;     // Update parent pointer      // Moving on left subtree.      if     (  ikey      <     ptr  .  info  )     {      if     (  ptr  .  lthread     ==     false  )      ptr     =     ptr  .  left  ;      else      break  ;      }      // Moving on right subtree.      else     {      if     (  ptr  .  rthread     ==     false  )      ptr     =     ptr  .  right  ;      else      break  ;      }      }      // Create a new node   var     tmp     =     new     Node  ();      tmp  .  info     =     ikey  ;      tmp  .  lthread     =     true  ;      tmp  .  rthread     =     true  ;      if     (  par     ==     null  )     {      root     =     tmp  ;      tmp  .  left     =     null  ;      tmp  .  right     =     null  ;      }     else     if     (  ikey      <     (  par  .  info  ))     {      tmp  .  left     =     par  .  left  ;      tmp  .  right     =     par  ;      par  .  lthread     =     false  ;      par  .  left     =     tmp  ;      }     else     {      tmp  .  left     =     par  ;      tmp  .  right     =     par  .  right  ;      par  .  rthread     =     false  ;      par  .  right     =     tmp  ;      }      return     root  ;      }      // Returns inorder successor using rthread      function     inorderSuccessor  (  ptr  )     {      // If rthread is set we can quickly find      if     (  ptr  .  rthread     ==     true  )      return     ptr  .  right  ;      // Else return leftmost child of right subtree      ptr     =     ptr  .  right  ;      while     (  ptr  .  lthread     ==     false  )      ptr     =     ptr  .  left  ;      return     ptr  ;      }      // Printing the threaded tree      function     inorder  (  root  )     {      if     (  root     ==     null  )      document  .  write  (  'Tree is empty'  );      // Reach leftmost node   var     ptr     =     root  ;      while     (  ptr  .  lthread     ==     false  )      ptr     =     ptr  .  left  ;      // One by one print successors      while     (  ptr     !=     null  )     {      document  .  write  (  ptr  .  info  +  ' '  );      ptr     =     inorderSuccessor  (  ptr  );      }      }      // Driver Program       var     root     =     null  ;      root     =     insert  (  root       20  );      root     =     insert  (  root       10  );      root     =     insert  (  root       30  );      root     =     insert  (  root       5  );      root     =     insert  (  root       16  );      root     =     insert  (  root       14  );      root     =     insert  (  root       17  );      root     =     insert  (  root       13  );      inorder  (  root  );   // This code contributed by aashish1995    <  /script>   

산출
5 10 13 14 16 17 20 30  

시간 복잡도: O(log N)

공간 복잡도: O(1) 추가 공간을 사용하지 않기 때문입니다.

 

퀴즈 만들기