이진 트리의 각 수준의 극단 노드를 교대로 인쇄합니다.

이진 트리의 각 수준의 극단 노드를 교대로 인쇄합니다.
GfG Practice에서 사용해 보세요. 이진 트리의 각 수준의 극단 노드를 교대로 인쇄합니다. #practiceLinkDiv { 표시: 없음 !중요; }

각 레벨의 맨 끝 모서리에 대한 이진 트리 인쇄 노드가 있지만 순서는 교대로 지정됩니다.
예: 
 

For above tree the output can be   1 2 7 8 31    - print rightmost node of 1st level  - print leftmost node of 2nd level  - print rightmost node of 3rd level  - print leftmost node of 4th level  - print rightmost node of 5th level OR   1 3 4 15 16    - print leftmost node of 1st level  - print rightmost node of 2nd level  - print leftmost node of 3rd level  - print rightmost node of 4th level  - print leftmost node of 5th level 
Recommended Practice 교대로 배열된 극한 노드 시도해 보세요!

아이디어는 레벨별로 트리 레벨을 탐색하는 것입니다. 각 레벨에 대해 우리는 노드 수를 계산하고 부울 플래그 값을 기반으로 가장 왼쪽 또는 가장 오른쪽 노드를 인쇄합니다. 현재 레벨의 모든 노드를 대기열에서 제외하고 다음 레벨의 모든 노드를 대기열에 추가하며 레벨을 전환할 때 부울 플래그 값을 반전시킵니다.

아래는 위의 아이디어를 구현한 것입니다. 

C++
   /* C++ program to print nodes of extreme corners   of each level in alternate order */   #include          using     namespace     std  ;   /* A binary tree node has data pointer to left child   and a pointer to right child */   struct     Node   {      int     data  ;      Node     *  left       *  right  ;   };   /* Helper function that allocates a new node with the   given data and NULL left and right pointers. */   Node  *     newNode  (  int     data  )   {      Node  *     node     =     new     Node  ;      node  ->  data     =     data  ;      node  ->  right     =     node  ->  left     =     NULL  ;      return     node  ;   }   /* Function to print nodes of extreme corners   of each level in alternate order */   void     printExtremeNodes  (  Node  *     root  )   {      if     (  root     ==     NULL  )      return  ;      // Create a queue and enqueue left and right      // children of root      queue   <  Node  *>     q  ;      q  .  push  (  root  );      // flag to indicate whether leftmost node or      // the rightmost node has to be printed      bool     flag     =     false  ;      while     (  !  q  .  empty  ())      {      // nodeCount indicates number of nodes      // at current level.      int     nodeCount     =     q  .  size  ();      int     n     =     nodeCount  ;      // Dequeue all nodes of current level      // and Enqueue all nodes of next level      while     (  n  --  )      {      Node  *     curr     =     q  .  front  ();      // Enqueue left child      if     (  curr  ->  left  )      q  .  push  (  curr  ->  left  );      // Enqueue right child      if     (  curr  ->  right  )      q  .  push  (  curr  ->  right  );      // Dequeue node      q  .  pop  ();      // if flag is true print leftmost node      if     (  flag     &&     n     ==     nodeCount     -     1  )      cout      < <     curr  ->  data      < <     ' '  ;      // if flag is false print rightmost node      if     (  !  flag     &&     n     ==     0  )      cout      < <     curr  ->  data      < <     ' '  ;      }      // invert flag for next level      flag     =     !  flag  ;      }   }   /* Driver program to test above functions */   int     main  ()   {      // Binary Tree of Height 4      Node  *     root     =     newNode  (  1  );      root  ->  left     =     newNode  (  2  );      root  ->  right     =     newNode  (  3  );      root  ->  left  ->  left     =     newNode  (  4  );      root  ->  left  ->  right     =     newNode  (  5  );      root  ->  right  ->  right     =     newNode  (  7  );      root  ->  left  ->  left  ->  left     =     newNode  (  8  );      root  ->  left  ->  left  ->  right     =     newNode  (  9  );      root  ->  left  ->  right  ->  left     =     newNode  (  10  );      root  ->  left  ->  right  ->  right     =     newNode  (  11  );      root  ->  right  ->  right  ->  left     =     newNode  (  14  );      root  ->  right  ->  right  ->  right     =     newNode  (  15  );      root  ->  left  ->  left  ->  left  ->  left     =     newNode  (  16  );      root  ->  left  ->  left  ->  left  ->  right     =     newNode  (  17  );      root  ->  right  ->  right  ->  right  ->  right     =     newNode  (  31  );      printExtremeNodes  (  root  );      return     0  ;   }   
Java
   // Java program to print nodes of extreme corners    //of each level in alternate order    import     java.util.*  ;   class   GFG   {       // A binary tree node has data pointer to left child    //and a pointer to right child /   static     class   Node      {         int     data  ;         Node     left       right  ;      };      // Helper function that allocates a new node with the    //given data and null left and right pointers. /   static     Node     newNode  (  int     data  )      {         Node     node     =     new     Node  ();         node  .  data     =     data  ;         node  .  right     =     node  .  left     =     null  ;         return     node  ;      }      // Function to print nodes of extreme corners    //of each level in alternate order    static     void     printExtremeNodes  (  Node     root  )      {         if     (  root     ==     null  )         return  ;         // Create a queue and enqueue left and right       // children of root       Queue   <  Node  >     q     =     new     LinkedList   <  Node  >  ();         q  .  add  (  root  );         // flag to indicate whether leftmost node or       // the rightmost node has to be printed       boolean     flag     =     false  ;         while     (  q  .  size  ()  >  0  )         {         // nodeCount indicates number of nodes       // at current level.       int     nodeCount     =     q  .  size  ();         int     n     =     nodeCount  ;         // Dequeue all nodes of current level       // and Enqueue all nodes of next level       while     (  n  -->  0  )         {         Node     curr     =     q  .  peek  ();         // Enqueue left child       if     (  curr  .  left  !=  null  )         q  .  add  (  curr  .  left  );         // Enqueue right child       if     (  curr  .  right  !=  null  )         q  .  add  (  curr  .  right  );         // Dequeue node       q  .  remove  ();         // if flag is true print leftmost node       if     (  flag     &&     n     ==     nodeCount     -     1  )         System  .  out  .  print  (     curr  .  data     +     ' '  );      // if flag is false print rightmost node       if     (  !  flag     &&     n     ==     0  )         System  .  out  .  print  (     curr  .  data     +     ' '  );         }             // invert flag for next level       flag     =     !  flag  ;         }      }      // Driver code   public     static     void     main  (  String     args  []  )   {         // Binary Tree of Height 4       Node     root     =     newNode  (  1  );         root  .  left     =     newNode  (  2  );         root  .  right     =     newNode  (  3  );         root  .  left  .  left     =     newNode  (  4  );         root  .  left  .  right     =     newNode  (  5  );         root  .  right  .  right     =     newNode  (  7  );         root  .  left  .  left  .  left     =     newNode  (  8  );         root  .  left  .  left  .  right     =     newNode  (  9  );         root  .  left  .  right  .  left     =     newNode  (  10  );         root  .  left  .  right  .  right     =     newNode  (  11  );         root  .  right  .  right  .  left     =     newNode  (  14  );         root  .  right  .  right  .  right     =     newNode  (  15  );         root  .  left  .  left  .  left  .  left     =     newNode  (  16  );         root  .  left  .  left  .  left  .  right     =     newNode  (  17  );         root  .  right  .  right  .  right  .  right     =     newNode  (  31  );         printExtremeNodes  (  root  );      }   }      // This code is contributed by Arnab Kundu   
Python
   # Python program to print nodes of extreme corners   # of each level in alternate order   # Utility class to create a node    class   Node  :   def   __init__  (  self     key  ):   self  .  data   =   key   self  .  left   =   self  .  right   =   None   # Utility function to create a tree node   def   newNode  (   data  ):   temp   =   Node  (  0  )   temp  .  data   =   data   temp  .  left   =   temp  .  right   =   None   return   temp   # Function to print nodes of extreme corners   # of each level in alternate order    def   printExtremeNodes  (   root  ):   if   (  root   ==   None  ):   return   # Create a queue and enqueue left and right   # children of root   q   =   []   q  .  append  (  root  )   # flag to indicate whether leftmost node or   # the rightmost node has to be printed   flag   =   False   while   (  len  (  q  )   >   0  ):   # nodeCount indicates number of nodes   # at current level.   nodeCount   =   len  (  q  )   n   =   nodeCount   # Dequeue all nodes of current level   # and Enqueue all nodes of next level   while   (  n   >   0  ):   n   =   n   -   1   curr   =   q  [  0  ]   # Enqueue left child   if   (  curr  .  left   !=   None  ):   q  .  append  (  curr  .  left  )   # Enqueue right child   if   (  curr  .  right   !=   None  ):   q  .  append  (  curr  .  right  )   # Dequeue node   q  .  pop  (  0  )   # if flag is true print leftmost node   if   (  flag   and   n   ==   nodeCount   -   1  ):   print  (   curr  .  data      end  =  ' '  )   # if flag is false print rightmost node   if   (  not   flag   and   n   ==   0  ):   print  (   curr  .  data     end  =   ' '  )   # invert flag for next level   flag   =   not   flag   # Driver program to test above functions    # Binary Tree of Height 4   root   =   newNode  (  1  )   root  .  left   =   newNode  (  2  )   root  .  right   =   newNode  (  3  )   root  .  left  .  left   =   newNode  (  4  )   root  .  left  .  right   =   newNode  (  5  )   root  .  right  .  right   =   newNode  (  7  )   root  .  left  .  left  .  left   =   newNode  (  8  )   root  .  left  .  left  .  right   =   newNode  (  9  )   root  .  left  .  right  .  left   =   newNode  (  10  )   root  .  left  .  right  .  right   =   newNode  (  11  )   root  .  right  .  right  .  left   =   newNode  (  14  )   root  .  right  .  right  .  right   =   newNode  (  15  )   root  .  left  .  left  .  left  .  left   =   newNode  (  16  )   root  .  left  .  left  .  left  .  right   =   newNode  (  17  )   root  .  right  .  right  .  right  .  right   =   newNode  (  31  )   printExtremeNodes  (  root  )   # This code is contributed by Arnab Kundu   
C#
   // C# program to print nodes of extreme corners    //of each level in alternate order    using     System  ;   using     System.Collections.Generic  ;   class     GFG   {       // A binary tree node has data pointer to left child    //and a pointer to right child /   public     class     Node      {         public     int     data  ;         public     Node     left       right  ;      };      // Helper function that allocates a new node with the    //given data and null left and right pointers. /   static     Node     newNode  (  int     data  )      {         Node     node     =     new     Node  ();         node  .  data     =     data  ;         node  .  right     =     node  .  left     =     null  ;         return     node  ;      }      // Function to print nodes of extreme corners    //of each level in alternate order    static     void     printExtremeNodes  (  Node     root  )      {         if     (  root     ==     null  )         return  ;         // Create a queue and enqueue left and right       // children of root       Queue   <  Node  >     q     =     new     Queue   <  Node  >  ();         q  .  Enqueue  (  root  );         // flag to indicate whether leftmost node or       // the rightmost node has to be printed       Boolean     flag     =     false  ;         while     (  q  .  Count     >     0  )         {         // nodeCount indicates number of nodes       // at current level.       int     nodeCount     =     q  .  Count  ;         int     n     =     nodeCount  ;         // Dequeue all nodes of current level       // and Enqueue all nodes of next level       while     (  n  -->  0  )         {         Node     curr     =     q  .  Peek  ();         // Enqueue left child       if     (  curr  .  left     !=     null  )         q  .  Enqueue  (  curr  .  left  );         // Enqueue right child       if     (  curr  .  right     !=     null  )         q  .  Enqueue  (  curr  .  right  );         // Dequeue node       q  .  Dequeue  ();         // if flag is true print leftmost node       if     (  flag     &&     n     ==     nodeCount     -     1  )         Console  .  Write  (     curr  .  data     +     ' '  );      // if flag is false print rightmost node       if     (  !  flag     &&     n     ==     0  )         Console  .  Write  (     curr  .  data     +     ' '  );         }             // invert flag for next level       flag     =     !  flag  ;         }      }      // Driver code   public     static     void     Main  (  String     []  args  )   {         // Binary Tree of Height 4       Node     root     =     newNode  (  1  );         root  .  left     =     newNode  (  2  );         root  .  right     =     newNode  (  3  );         root  .  left  .  left     =     newNode  (  4  );         root  .  left  .  right     =     newNode  (  5  );         root  .  right  .  right     =     newNode  (  7  );         root  .  left  .  left  .  left     =     newNode  (  8  );         root  .  left  .  left  .  right     =     newNode  (  9  );         root  .  left  .  right  .  left     =     newNode  (  10  );         root  .  left  .  right  .  right     =     newNode  (  11  );         root  .  right  .  right  .  left     =     newNode  (  14  );         root  .  right  .  right  .  right     =     newNode  (  15  );         root  .  left  .  left  .  left  .  left     =     newNode  (  16  );         root  .  left  .  left  .  left  .  right     =     newNode  (  17  );         root  .  right  .  right  .  right  .  right     =     newNode  (  31  );         printExtremeNodes  (  root  );      }   }   // This code is contributed by Rajput-Ji   
JavaScript
    <  script  >       // JavaScript program to print nodes of extreme corners    //of each level in alternate order        // A binary tree node has data pointer to left child    //and a pointer to right child /   class     Node      {         constructor  ()      {      this  .  data     =     0  ;      this  .  left     =     null  ;      this  .  right     =     null  ;      }   };      // Helper function that allocates a new node with the    //given data and null left and right pointers. /   function     newNode  (  data  )      {         var     node     =     new     Node  ();         node  .  data     =     data  ;         node  .  right     =     node  .  left     =     null  ;         return     node  ;      }      // Function to print nodes of extreme corners    //of each level in alternate order    function     printExtremeNodes  (  root  )      {         if     (  root     ==     null  )         return  ;         // Create a queue and enqueue left and right       // children of root       var     q     =     [];         q  .  push  (  root  );         // flag to indicate whether leftmost node or       // the rightmost node has to be printed       var     flag     =     false  ;         while     (  q  .  length     >     0  )         {         // nodeCount indicates number of nodes       // at current level.       var     nodeCount     =     q  .  length  ;         var     n     =     nodeCount  ;         // Dequeue all nodes of current level       // and push all nodes of next level       while     (  n  -->  0  )         {         var     curr     =     q  [  0  ];         // push left child       if     (  curr  .  left     !=     null  )         q  .  push  (  curr  .  left  );         // push right child       if     (  curr  .  right     !=     null  )         q  .  push  (  curr  .  right  );         // Dequeue node       q  .  shift  ();         // if flag is true print leftmost node       if     (  flag     &&     n     ==     nodeCount     -     1  )         document  .  write  (     curr  .  data     +     ' '  );      // if flag is false print rightmost node       if     (  !  flag     &&     n     ==     0  )         document  .  write  (     curr  .  data     +     ' '  );         }             // invert flag for next level       flag     =     !  flag  ;         }      }      // Driver code   // Binary Tree of Height 4    var     root     =     newNode  (  1  );      root  .  left     =     newNode  (  2  );      root  .  right     =     newNode  (  3  );      root  .  left  .  left     =     newNode  (  4  );      root  .  left  .  right     =     newNode  (  5  );      root  .  right  .  right     =     newNode  (  7  );      root  .  left  .  left  .  left     =     newNode  (  8  );      root  .  left  .  left  .  right     =     newNode  (  9  );      root  .  left  .  right  .  left     =     newNode  (  10  );      root  .  left  .  right  .  right     =     newNode  (  11  );      root  .  right  .  right  .  left     =     newNode  (  14  );      root  .  right  .  right  .  right     =     newNode  (  15  );      root  .  left  .  left  .  left  .  left     =     newNode  (  16  );      root  .  left  .  left  .  left  .  right     =     newNode  (  17  );      root  .  right  .  right  .  right  .  right     =     newNode  (  31  );      printExtremeNodes  (  root  );       <  /script>    

산출
1 2 7 8 31  


시간 복잡도: O(n) 여기서 n은 주어진 이진 트리의 총 노드 수입니다.
보조 공간: O(n) 여기서 n은 대기열로 인해 주어진 이진 트리의 총 노드 수입니다.

운동 - 각 레벨의 맨 끝 모서리에 있는 노드를 아래에서 위로 교대로 인쇄합니다.