二分木を二分探索木に変換するために必要な最小スワップ

二分木を二分探索木に変換するために必要な最小スワップ

配列が与えられた場合 到着[] を表す 完全なバイナリ ツリー つまり、もし インデックス i です 索引 2*i + 1 です 左の子 そして インデックス 2*i + 2 正しい子です。 課題は、 最小 の数 スワップ に変換するために必要な 二分探索ツリー。

例:  

入力: arr[] = [5 6 7 8 9 10 11]
出力: 3
説明:
指定された配列のバイナリ ツリー:



バイナリ ツリーをバイナリ検索ツリー 1 に変換するために必要な最小スワップ

スワップ 1: ノード 8 とノード 5 を交換します。
スワップ 2: ノード 9 をノード 10 と交換します。
スワップ 3: ノード 10 をノード 7 と交換します。

したがって、以下の二分探索木を取得するには、少なくとも 3 つのスワップが必要です。

バイナリ ツリーをバイナリ検索ツリー 3 に変換するために必要な最小スワップ


入力: arr[] = [1 2 3]
出力: 1
説明:
指定された配列のバイナリ ツリー:

バイナリ ツリーをバイナリ検索ツリー 2 に変換するために必要な最小スワップ

ノード 1 をノード 2 と交換した後、以下の二分探索ツリーを取得します。

バイナリ ツリーをバイナリ検索ツリー 4 に変換するために必要な最小スワップ

アプローチ:

という事実を利用するのがアイデアです。 順序トラバーサル 二分探索木 いる 増加する 値の順序。 
それで、 順序トラバーサル バイナリツリーと それを配列に格納します そして試してみてください 選別 配列。の 配列をソートするために必要なスワップの最小数 が答えになります。

C++
   // C++ program for Minimum swap required   // to convert binary tree to binary search tree   #include       using     namespace     std  ;   // Function to perform inorder traversal of the binary tree   // and store it in vector v   void     inorder  (  vector   <  int  >&     arr       vector   <  int  >&     inorderArr       int     index  )     {          int     n     =     arr  .  size  ();          // If index is out of bounds return      if     (  index     >=     n  )      return  ;      // Recursively visit left subtree      inorder  (  arr       inorderArr       2     *     index     +     1  );          // Store current node value in vector      inorderArr  .  push_back  (  arr  [  index  ]);          // Recursively visit right subtree      inorder  (  arr       inorderArr       2     *     index     +     2  );   }   // Function to calculate minimum swaps    // to sort inorder traversal   int     minSwaps  (  vector   <  int  >&     arr  )     {      int     n     =     arr  .  size  ();      vector   <  int  >     inorderArr  ;          // Get the inorder traversal of the binary tree      inorder  (  arr       inorderArr       0  );          // Create an array of pairs to store value      // and original index      vector   <  pair   <  int       int  >>     t  (  inorderArr  .  size  ());      int     ans     =     0  ;          // Store the value and its index      for     (  int     i     =     0  ;     i      <     inorderArr  .  size  ();     i  ++  )      t  [  i  ]     =     {  inorderArr  [  i  ]     i  };          // Sort the pair array based on values       // to get BST order      sort  (  t  .  begin  ()     t  .  end  ());          // Find minimum swaps by detecting cycles      for     (  int     i     =     0  ;     i      <     t  .  size  ();     i  ++  )     {          // If the element is already in the       // correct position continue      if     (  i     ==     t  [  i  ].  second  )      continue  ;          // Otherwise perform swaps until the element      // is in the right place      else     {          // Swap elements to correct positions      swap  (  t  [  i  ].  first       t  [  t  [  i  ].  second  ].  first  );      swap  (  t  [  i  ].  second       t  [  t  [  i  ].  second  ].  second  );      }          // Check if the element is still not      // in the correct position      if     (  i     !=     t  [  i  ].  second  )      --  i  ;             // Increment swap count      ans  ++  ;      }          return     ans  ;   }   int     main  ()     {          vector   <  int  >     arr     =     {     5       6       7       8       9       10       11     };      cout      < <     minSwaps  (  arr  )      < <     endl  ;   }   
Java
   // Java program for Minimum swap required   // to convert binary tree to binary search tree   import     java.util.Arrays  ;   class   GfG     {          // Function to perform inorder traversal of the binary tree      // and store it in an array      static     void     inorder  (  int  []     arr       int  []     inorderArr           int     index       int  []     counter  )     {      int     n     =     arr  .  length  ;          // Base case: if index is out of bounds return      if     (  index     >=     n  )      return  ;          // Recursively visit left subtree      inorder  (  arr       inorderArr       2     *     index     +     1       counter  );          // Store current node value in the inorder array      inorderArr  [  counter  [  0  ]]     =     arr  [  index  ]  ;      counter  [  0  ]++  ;          // Recursively visit right subtree      inorder  (  arr       inorderArr       2     *     index     +     2       counter  );      }      // Function to calculate minimum swaps       // to sort inorder traversal      static     int     minSwaps  (  int  []     arr  )     {      int     n     =     arr  .  length  ;      int  []     inorderArr     =     new     int  [  n  ]  ;      int  []     counter     =     new     int  [  1  ]  ;          // Get the inorder traversal of the binary tree      inorder  (  arr       inorderArr       0       counter  );          // Create an array of pairs to store the value       // and its original index      int  [][]     t     =     new     int  [  n  ][  2  ]  ;      int     ans     =     0  ;          // Store the value and its original index      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      t  [  i  ][  0  ]     =     inorderArr  [  i  ]  ;      t  [  i  ][  1  ]     =     i  ;      }          // Sort the array based on values to get BST order      Arrays  .  sort  (  t       (  a       b  )     ->     Integer  .  compare  (  a  [  0  ]       b  [  0  ]  ));          // Find minimum swaps by detecting cycles      boolean  []     visited     =     new     boolean  [  n  ]  ;          // Iterate through the array to find cycles      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {          // If the element is already visited or in      // the correct place continue      if     (  visited  [  i  ]     ||     t  [  i  ][  1  ]     ==     i  )      continue  ;          // Start a cycle and find the number of      // nodes in the cycle      int     cycleSize     =     0  ;      int     j     =     i  ;          while     (  !  visited  [  j  ]  )     {      visited  [  j  ]     =     true  ;      j     =     t  [  j  ][  1  ]  ;      cycleSize  ++  ;      }          // If there is a cycle we need (cycleSize - 1)      // swaps to sort the cycle      if     (  cycleSize     >     1  )     {      ans     +=     (  cycleSize     -     1  );      }      }          // Return the total number of swaps      return     ans  ;      }      public     static     void     main  (  String  []     args  )     {      int  []     arr     =     {  5       6       7       8       9       10       11  };         System  .  out  .  println  (  minSwaps  (  arr  ));      }   }   
Python
   # Python program for Minimum swap required   # to convert binary tree to binary search tree   # Function to perform inorder traversal of the binary tree   # and store it in an array   def   inorder  (  arr     inorderArr     index  ):   # If index is out of bounds return   n   =   len  (  arr  )   if   index   >=   n  :   return   # Recursively visit left subtree   inorder  (  arr     inorderArr     2   *   index   +   1  )   # Store current node value in inorderArr   inorderArr  .  append  (  arr  [  index  ])   # Recursively visit right subtree   inorder  (  arr     inorderArr     2   *   index   +   2  )   # Function to calculate minimum swaps    # to sort inorder traversal   def   minSwaps  (  arr  ):   inorderArr   =   []   # Get the inorder traversal of the binary tree   inorder  (  arr     inorderArr     0  )   # Create a list of pairs to store value and original index   t   =   [(  inorderArr  [  i  ]   i  )   for   i   in   range  (  len  (  inorderArr  ))]   ans   =   0   # Sort the list of pairs based on values   # to get BST order   t  .  sort  ()   # Initialize visited array   visited   =   [  False  ]   *   len  (  t  )   # Find minimum swaps by detecting cycles   for   i   in   range  (  len  (  t  )):   # If already visited or already in the   # correct place skip   if   visited  [  i  ]   or   t  [  i  ][  1  ]   ==   i  :   continue   # Start a cycle and find the number of    # nodes in the cycle   cycleSize   =   0   j   =   i   # Process all elements in the cycle   while   not   visited  [  j  ]:   visited  [  j  ]   =   True   j   =   t  [  j  ][  1  ]   cycleSize   +=   1   # If there is a cycle of size `cycle_size` we    # need `cycle_size - 1` swaps   if   cycleSize   >   1  :   ans   +=   (  cycleSize   -   1  )   # Return total number of swaps   return   ans   if   __name__   ==   '__main__'  :   arr   =   [  5     6     7     8     9     10     11  ]   print  (  minSwaps  (  arr  ))   
C#
   // C# program for Minimum swap required   // to convert binary tree to binary search tree   using     System  ;   using     System.Linq  ;   class     GfG     {          // Function to perform inorder traversal of the binary tree      // and store it in an array      static     void     Inorder  (  int  []     arr       int  []     inorderArr       int     index       ref     int     counter  )     {      int     n     =     arr  .  Length  ;      // Base case: if index is out of bounds return      if     (  index     >=     n  )      return  ;      // Recursively visit left subtree      Inorder  (  arr       inorderArr       2     *     index     +     1       ref     counter  );      // Store current node value in inorderArr      inorderArr  [  counter  ]     =     arr  [  index  ];      counter  ++  ;      // Recursively visit right subtree      Inorder  (  arr       inorderArr       2     *     index     +     2       ref     counter  );      }      // Function to calculate minimum      // swaps to sort inorder traversal      static     int     MinSwaps  (  int  []     arr  )     {      int     n     =     arr  .  Length  ;      int  []     inorderArr     =     new     int  [  n  ];      int     counter     =     0  ;      // Get the inorder traversal of the binary tree      Inorder  (  arr       inorderArr       0       ref     counter  );      // Create an array of pairs to store value       // and original index      var     t     =     new     (  int       int  )[  n  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      t  [  i  ]     =     (  inorderArr  [  i  ]     i  );      }      // Sort the array based on values to get BST order      Array  .  Sort  (  t       (  a       b  )     =>     a  .  Item1  .  CompareTo  (  b  .  Item1  ));      // Initialize visited array      bool  []     visited     =     new     bool  [  n  ];      int     ans     =     0  ;      // Find minimum swaps by detecting cycles      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {          // If already visited or already in       // the correct place skip      if     (  visited  [  i  ]     ||     t  [  i  ].  Item2     ==     i  )      continue  ;      // Start a cycle and find the number       // of nodes in the cycle      int     cycleSize     =     0  ;      int     j     =     i  ;      // Process all elements in the cycle      while     (  !  visited  [  j  ])     {      visited  [  j  ]     =     true  ;      j     =     t  [  j  ].  Item2  ;      cycleSize  ++  ;      }      // If there is a cycle of size `cycle_size` we      // need `cycle_size - 1` swaps      if     (  cycleSize     >     1  )      {      ans     +=     (  cycleSize     -     1  );      }      }      // Return total number of swaps      return     ans  ;      }      static     void     Main  (  string  []     args  )     {          int  []     arr     =     {     5       6       7       8       9       10       11     };      Console  .  WriteLine  (  MinSwaps  (  arr  ));      }   }   
JavaScript
   // Javascript program for Minimum swap required   // to convert binary tree to binary search tree   // Inorder traversal to get values in sorted order   function     inorder  (  arr       inorderArr       index  )     {      // If index is out of bounds return      if     (  index     >=     arr  .  length  )      return  ;      // Recursively visit left subtree      inorder  (  arr       inorderArr       2     *     index     +     1  );      // Store current node value in array      inorderArr  .  push  (  arr  [  index  ]);      // Recursively visit right subtree      inorder  (  arr       inorderArr       2     *     index     +     2  );   }   // Function to calculate minimum swaps to sort inorder   // traversal   function     minSwaps  (  arr  )     {      let     inorderArr     =     [];      // Get the inorder traversal of the binary tree      inorder  (  arr       inorderArr       0  );      // Create an array of pairs to store value and original      // index      let     t     =     inorderArr  .  map  ((  val       i  )     =>     [  val       i  ]);      let     ans     =     0  ;      // Sort the pair array based on values to get BST order      t  .  sort  ((  a       b  )     =>     a  [  0  ]     -     b  [  0  ]);      // Find minimum swaps by detecting cycles      let     visited     =     Array  (  arr  .  length  )      .  fill  (  false  );      for     (  let     i     =     0  ;     i      <     t  .  length  ;     i  ++  )     {          // If the element is already in the correct      // position continue      if     (  visited  [  i  ]     ||     t  [  i  ][  1  ]     ===     i  )      continue  ;      // Otherwise perform swaps until the element is in      // the right place      let     cycleSize     =     0  ;      let     j     =     i  ;      while     (  !  visited  [  j  ])     {      visited  [  j  ]     =     true  ;      j     =     t  [  j  ][  1  ];      cycleSize  ++  ;      }      // If there is a cycle we need (cycleSize - 1)      // swaps to sort the cycle      if     (  cycleSize     >     1  )     {      ans     +=     (  cycleSize     -     1  );      }      }      // Return total number of swaps      return     ans  ;   }   let     arr     =     [     5       6       7       8       9       10       11     ];   console  .  log  (  minSwaps  (  arr  ));   

出力
3  

時間計算量: O(n*logn) ここで n 配列内の要素の数です。
補助スペース: O(n) 配列に余分なスペースを使用しているため 

エクササイズ: これを通常のバイナリ ツリー、つまり左右のポインタを使用して表現され、必ずしも完全ではないバイナリ ツリーに拡張できますか?

クイズの作成

トップ記事

カテゴリ

興味深い記事