指定された 2N X 2N 行列からの N X N 左上の部分行列の合計を最大化します

指定された 2N X 2N 行列からの N X N 左上の部分行列の合計を最大化します

与えられた 2N×2N 整数の行列。任意の行または列を、何度でも、任意の順序で反転することができます。タスクは、左上の合計の最大値を計算することです。 N×N 部分行列、つまり、(0 0) から (N - 1 N - 1) までの部分行列の要素の合計。

例:  

入力: with[][] = {

                    112 42 83 119

                    56 125 56 49

                    15 78 101 43

                    62 98 114 108

                  }

出力: 414

行列のサイズが 4 X 4 であるとすると、最大化する必要があります 

左上の 2 X 2 行列の合計、つまり 

mat[0][0] + mat[0][1] + mat[1][0] + mat[1][1] の合計。

次の操作により合計が最大化されます。

1. カラム 2 を反転します。

112 42 114 119

56 125 101 49

15 78 56 43

62 98 83 108

2.行0を反転します

119 114 42 112

56 125 101 49

15 78 56 43

62 98 83 108

左上の行列の合計 = 119 + 114 + 56 + 125 = 414。

左上の部分行列の合計を最大化するには、左上の部分行列の各セルについて、交換できる左上、右上、左下、および右下の部分行列の対応するセルを意味する 4 つの候補があることを確認します。 

ここで、各セルがどこにあっても、左上の部分行列内の他のセルの順序を変更せずに、左上の部分行列内の対応する候補値と入れ替えることができることに注目してください。図は、4 つの候補の最大値が右上の部分行列内にある例を示しています。それが左下または右下の部分行列にある場合は、まず行または列を反転して右上の部分行列に配置し、次に図に示すのと同じ操作シーケンスに従うことができます。 

このマトリックスでは、 26 は 4 つの候補の最大値であり、 23 と交換する必要があります 26 左上の部分行列のセルの順序は変更しません。

マトリックス

行 2 を反転 
 

指定された 2N X 2N 行列からの N X N 左上の部分行列の合計を最大化します


列 2 を反転 
 

指定された 2N X 2N 行列からの N X N 左上の部分行列の合計を最大化します


反転列 7 
 

指定された 2N X 2N 行列からの N X N 左上の部分行列の合計を最大化します


逆列 6 
 

指定された 2N X 2N 行列からの N X N 左上の部分行列の合計を最大化します


行 2 を反転 
 

指定された 2N X 2N 行列からの N X N 左上の部分行列の合計を最大化します

以下はこのアプローチの実装です。 

C++
   // C++ program to find maximum value of top N/2 x N/2   // matrix using row and column reverse operations   #include          #define R 4   #define C 4   using     namespace     std  ;   int     maxSum  (  int     mat  [  R  ][  C  ])   {      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     R     /     2  ;     i  ++  )      for     (  int     j     =     0  ;     j      <     C     /     2  ;     j  ++  )     {      int     r1     =     i  ;      int     r2     =     R     -     i     -     1  ;      int     c1     =     j  ;      int     c2     =     C     -     j     -     1  ;      // We can replace current cell [i j]      // with 4 cells without changing affecting      // other elements.      sum     +=     max  (  max  (  mat  [  r1  ][  c1  ]     mat  [  r1  ][  c2  ])      max  (  mat  [  r2  ][  c1  ]     mat  [  r2  ][  c2  ]));      }      return     sum  ;   }   // Driven Program   int     main  ()   {      int     mat  [  R  ][  C  ]      =     {     112       42       83       119       56       125       56       49        15       78       101       43       62       98       114       108     };      cout      < <     maxSum  (  mat  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find maximum value of top N/2 x N/2   // matrix using row and column reverse operations   class   GFG     {      static     int     maxSum  (  int     mat  [][]  )      {      int     sum     =     0  ;      int     maxI     =     mat  .  length  ;      int     maxIPossible     =     maxI     -     1  ;      int     maxJ     =     mat  [  0  ]  .  length  ;      int     maxJPossible     =     maxJ     -     1  ;      for     (  int     i     =     0  ;     i      <     maxI     /     2  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     maxJ     /     2  ;     j  ++  )     {      // We can replace current cell [i j]      // with 4 cells without changing affecting      // other elements.      sum     +=     Math  .  max  (      Math  .  max  (  mat  [  i  ][  j  ]        mat  [  maxIPossible     -     i  ][  j  ]  )      Math  .  max  (  mat  [  maxIPossible     -     i  ]      [  maxJPossible     -     j  ]        mat  [  i  ][  maxJPossible     -     j  ]  ));      }      }      return     sum  ;      }      // Driven Program      public     static     void     main  (  String  []     args  )      {      int     mat  [][]     =     {     {     112       42       83       119     }      {     56       125       56       49     }      {     15       78       101       43     }      {     62       98       114       108     }     };      System  .  out  .  println  (  maxSum  (  mat  ));      }   }   /* This Java code is contributed by Rajput-Ji*/   
Python3
   # Python3 program to find the maximum value   # of top N/2 x N/2 matrix using row and   # column reverse operations   def   maxSum  (  mat  ):   Sum   =   0   for   i   in   range  (  0     R   //   2  ):   for   j   in   range  (  0     C   //   2  ):   r1     r2   =   i     R   -   i   -   1   c1     c2   =   j     C   -   j   -   1   # We can replace current cell [i j]   # with 4 cells without changing/affecting   # other elements.   Sum   +=   max  (  max  (  mat  [  r1  ][  c1  ]   mat  [  r1  ][  c2  ])   max  (  mat  [  r2  ][  c1  ]   mat  [  r2  ][  c2  ]))   return   Sum   # Driver Code   if   __name__   ==   '__main__'  :   R   =   C   =   4   mat   =   [[  112     42     83     119  ]   [  56     125     56     49  ]   [  15     78     101     43  ]   [  62     98     114     108  ]]   print  (  maxSum  (  mat  ))   # This code is contributed   # by Rituraj Jain   
C#
   // C# program to find maximum value   // of top N/2 x N/2 matrix using row   // and column reverse operations   using     System  ;   class     GFG     {      static     int     R     =     4  ;      static     int     C     =     4  ;      static     int     maxSum  (  int  [     ]     mat  )      {      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     R     /     2  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     C     /     2  ;     j  ++  )     {      int     r1     =     i  ;      int     r2     =     R     -     i     -     1  ;      int     c1     =     j  ;      int     c2     =     C     -     j     -     1  ;      // We can replace current cell [i j]      // with 4 cells without changing affecting      // other elements.      sum     +=     Math  .  Max  (      Math  .  Max  (  mat  [  r1       c1  ]     mat  [  r1       c2  ])      Math  .  Max  (  mat  [  r2       c1  ]     mat  [  r2       c2  ]));      }      }      return     sum  ;      }      // Driven Code      public     static     void     Main  ()      {      int  [     ]     mat     =     {     {     112       42       83       119     }      {     56       125       56       49     }      {     15       78       101       43     }      {     62       98       114       108     }     };      Console  .  Write  (  maxSum  (  mat  ));      }   }   // This code is contributed   // by ChitraNayal   
PHP
      // PHP program to find maximum value    // of top N/2 x N/2 matrix using row    // and column reverse operations   function   maxSum  (  $mat  )   {   $R   =   4  ;   $C   =   4  ;   $sum   =   0  ;   for   (  $i   =   0  ;   $i    <   $R   /   2  ;   $i  ++  )   for   (  $j   =   0  ;   $j    <   $C   /   2  ;   $j  ++  )   {   $r1   =   $i  ;   $r2   =   $R   -   $i   -   1  ;   $c1   =   $j  ;   $c2   =   $C   -   $j   -   1  ;   // We can replace current cell [i j]   // with 4 cells without changing    // affecting other elements.   $sum   +=   max  (  max  (  $mat  [  $r1  ][  $c1  ]   $mat  [  $r1  ][  $c2  ])   max  (  $mat  [  $r2  ][  $c1  ]   $mat  [  $r2  ][  $c2  ]));   }   return   $sum  ;   }   // Driver Code   $mat   =   array  (  array  (  112     42     83     119  )   array  (  56     125     56     49  )   array  (  15     78     101     43  )   array  (  62     98     114     108  ));   echo   maxSum  (  $mat  )   .   '  n  '  ;   // This code is contributed   // by Mukul Singh   ?>   
JavaScript
    <  script  >   // Javascript program to find maximum value of top N/2 x N/2   // matrix using row and column reverse operations          let     R     =     4  ;      let     C     =     4  ;          function     maxSum  (  mat  )      {      let     sum     =     0  ;          for     (  let     i     =     0  ;     i      <     R     /     2  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     C     /     2  ;     j  ++  )     {      let     r1     =     i  ;      let     r2     =     R     -     i     -     1  ;      let     c1     =     j  ;      let     c2     =     C     -     j     -     1  ;          // We can replace current cell [i j]      // with 4 cells without changing affecting      // other elements.      sum     +=     Math  .  max  (  Math  .  max  (  mat  [  r1  ][  c1  ]     mat  [  r1  ][  c2  ])      Math  .  max  (  mat  [  r2  ][  c1  ]     mat  [  r2  ][  c2  ]));      }      }          return     sum  ;      }      // Driven Program      let     mat     =     [[  112       42       83       119  ]         [  56       125       56       49  ]         [  15       78       101       43  ]         [  62       98       114       108  ]];      document  .  write  (  maxSum  (  mat  ));          // This code is contributed by avanitrachhadiya2155    <  /script>   

出力
414 

時間計算量: O(N 2 )。
補助スペース: O(1) 変数に定数スペースを使用しているため

 

クイズの作成