Somma delle differenze di sottoinsieme
#practiceLinkDiv { display: none! importante; } Dato un insieme S composto da n numeri trovare la somma della differenza tra l'ultimo e il primo elemento di ciascun sottoinsieme. Troviamo il primo e l'ultimo elemento di ogni sottoinsieme mantenendoli nello stesso ordine in cui appaiono nell'insieme di input S. ovvero sumSetDiff(S) = ? (ultimo(i) - primo(i)) dove la somma copre tutti i sottoinsiemi s di S.
Nota:
Gli elementi nel sottoinsieme dovrebbero essere nello stesso ordine dell'insieme S. Esempi:
S = {5 2 9 6} n = 4
Subsets are:
{5} last(s)-first(s) = 0.
{2} last(s)-first(s) = 0.
{9} last(s)-first(s) = 0.
{6} last(s)-first(s) = 0.
{52} last(s)-first(s) = -3.
{59} last(s)-first(s) = 4.
{56} last(s)-first(s) = 1.
{29} last(s)-first(s) = 7.
{26} last(s)-first(s) = 4.
{96} last(s)-first(s) = -3.
{529} last(s)-first(s) = 4.
{526} last(s)-first(s) = 1.
{596} last(s)-first(s) = 1.
{296} last(s)-first(s) = 4.
{5296} last(s)-first(s) = 1.
Output = -3+4+1+7+4-3+4+1+1+4+1
= 21.
Consigliato: risolverlo su ' PRATICA ' prima di passare alla soluzione.
Una soluzione semplice
poiché questo problema consiste nel trovare la differenza tra l'ultimo e il primo elemento per ciascun sottoinsieme s dell'insieme S e restituire la somma di tutte queste differenze. La complessità temporale per questo approccio è O(2
N
).
Una soluzione efficiente
risolvere il problema in complessità temporale lineare. Ci viene dato un insieme S composto da n numeri e dobbiamo calcolare la somma della differenza tra l'ultimo e il primo elemento di ciascun sottoinsieme di S, ovvero sumSetDiff(S) = ? (ultimo(i) - primo(i)) dove la somma copre tutti i sottoinsiemi s di S. Equivalentemente sumSetDiff(S) = ? (ultimo(i)) - ? (first(s)) In altre parole possiamo calcolare la somma dell'ultimo elemento di ciascun sottoinsieme e la somma del primo elemento di ciascun sottoinsieme separatamente e quindi calcolare la loro differenza. Diciamo che gli elementi di S sono {a1 a2 a3... an}. Si noti la seguente osservazione:
Crea quiz
- Sottoinsiemi contenenti elemento a1 poiché il primo elemento può essere ottenuto prendendo qualsiasi sottoinsieme di {a2 a3... an} e includendovi a1. Il numero di tali sottoinsiemi sarà 2 n-1 .
- I sottoinsiemi contenenti l'elemento a2 come primo elemento possono essere ottenuti prendendo qualsiasi sottoinsieme di {a3 a4... an} e quindi includendovi a2. Il numero di tali sottoinsiemi sarà 2 n-2 .
- I sottoinsiemi contenenti l'elemento ai come primo elemento possono essere ottenuti prendendo qualsiasi sottoinsieme di {ai a(i+1)... an} e quindi includendovi ai. Il numero di tali sottoinsiemi sarà 2 n-i .
- Pertanto la somma del primo elemento di tutti i sottoinsiemi sarà: SumF = a1.2
- n-1
- +a2.2
- n-2
- +...+ an.1 In modo simile possiamo calcolare la somma dell'ultimo elemento di tutti i sottoinsiemi di S (prendendo ad ogni passo ai come ultimo elemento anziché primo elemento e quindi ottenendo tutti i sottoinsiemi). Somma L = a1.1 + a2.2 +...+ an.2
- n-1
- Finalmente la risposta al nostro problema sarà
- SommaL - SommaF
- .
- Attuazione:
- C++
Java// A C++ program to find sum of difference between // last and first element of each subset #include// Returns the sum of first elements of all subsets int SumF ( int S [] int n ) { int sum = 0 ; // Compute the SumF as given in the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( S [ i ] * pow ( 2 n - i -1 )); return sum ; } // Returns the sum of last elements of all subsets int SumL ( int S [] int n ) { int sum = 0 ; // Compute the SumL as given in the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( S [ i ] * pow ( 2 i )); return sum ; } // Returns the difference between sum of last elements of // each subset and the sum of first elements of each subset int sumSetDiff ( int S [] int n ) { return SumL ( S n ) - SumF ( S n ); } // Driver program to test above function int main () { int n = 4 ; int S [] = { 5 2 9 6 }; printf ( '%d n ' sumSetDiff ( S n )); return 0 ; } Python3// A Java program to find sum of difference // between last and first element of each // subset class GFG { // Returns the sum of first elements // of all subsets static int SumF ( int S [] int n ) { int sum = 0 ; // Compute the SumF as given in // the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( int )( S [ i ] * Math . pow ( 2 n - i - 1 )); return sum ; } // Returns the sum of last elements // of all subsets static int SumL ( int S [] int n ) { int sum = 0 ; // Compute the SumL as given in // the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( int )( S [ i ] * Math . pow ( 2 i )); return sum ; } // Returns the difference between sum // of last elements of each subset and // the sum of first elements of each // subset static int sumSetDiff ( int S [] int n ) { return SumL ( S n ) - SumF ( S n ); } // Driver program public static void main ( String arg [] ) { int n = 4 ; int S [] = { 5 2 9 6 }; System . out . println ( sumSetDiff ( S n )); } } // This code is contributed by Anant Agarwal.C## Python3 program to find sum of # difference between last and # first element of each subset # Returns the sum of first # elements of all subsets def SumF ( S n ): sum = 0 # Compute the SumF as given # in the above explanation for i in range ( n ): sum = sum + ( S [ i ] * pow ( 2 n - i - 1 )) return sum # Returns the sum of last # elements of all subsets def SumL ( S n ): sum = 0 # Compute the SumL as given # in the above explanation for i in range ( n ): sum = sum + ( S [ i ] * pow ( 2 i )) return sum # Returns the difference between sum # of last elements of each subset and # the sum of first elements of each subset def sumSetDiff ( S n ): return SumL ( S n ) - SumF ( S n ) # Driver program n = 4 S = [ 5 2 9 6 ] print ( sumSetDiff ( S n )) # This code is contributed by Anant Agarwal.JavaScript// A C# program to find sum of difference // between last and first element of each // subset using System ; class GFG { // Returns the sum of first elements // of all subsets static int SumF ( int [] S int n ) { int sum = 0 ; // Compute the SumF as given in // the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( int )( S [ i ] * Math . Pow ( 2 n - i - 1 )); return sum ; } // Returns the sum of last elements // of all subsets static int SumL ( int [] S int n ) { int sum = 0 ; // Compute the SumL as given in // the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( int )( S [ i ] * Math . Pow ( 2 i )); return sum ; } // Returns the difference between sum // of last elements of each subset and // the sum of first elements of each // subset static int sumSetDiff ( int [] S int n ) { return SumL ( S n ) - SumF ( S n ); } // Driver program public static void Main () { int n = 4 ; int [] S = { 5 2 9 6 }; Console . Write ( sumSetDiff ( S n )); } } // This code is contributed by nitin mittal.PHP// Returns the sum of first elements of all subsets function sumF ( S n ) { let sum = 0 ; // Compute the SumF as given in the above explanation for ( let i = 0 ; i < n ; i ++ ) { sum += S [ i ] * Math . pow ( 2 n - i - 1 ); } return sum ; } // Returns the sum of last elements of all subsets function sumL ( S n ) { let sum = 0 ; // Compute the SumL as given in the above explanation for ( let i = 0 ; i < n ; i ++ ) { sum += S [ i ] * Math . pow ( 2 i ); } return sum ; } // Returns the difference between sum of last elements of each subset and the sum of first elements of each subset function sumSetDiff ( S n ) { return sumL ( S n ) - sumF ( S n ); } // Driver program to test the above functions function main () { const n = 4 ; const S = [ 5 2 9 6 ]; console . log ( sumSetDiff ( S n )); } main ();// A PHP program to find sum // of difference between last // and first element of each subset // Returns the sum of first // elements of all subsets function SumF ( $S $n ) { $sum = 0 ; // Compute the SumF as given // in the above explanation for ( $i = 0 ; $i < $n ; $i ++ ) $sum = $sum + ( $S [ $i ] * pow ( 2 $n - $i - 1 )); return $sum ; } // Returns the sum of last // elements of all subsets function SumL ( $S $n ) { $sum = 0 ; // Compute the SumL as given // in the above explanation for ( $i = 0 ; $i < $n ; $i ++ ) $sum = $sum + ( $S [ $i ] * pow ( 2 $i )); return $sum ; } // Returns the difference between // sum of last elements of // each subset and the sum of // first elements of each subset function sumSetDiff ( $S $n ) { return SumL ( $S $n ) - SumF ( $S $n ); } // Driver Code $n = 4 ; $S = array ( 5 2 9 6 ); echo sumSetDiff ( $S $n ); // This code is contributed by anuj_67. ?>- Produzione:
21
- Complessità temporale: O(n) Questo articolo è stato fornito da
- Akash Aggarwal
- . Se ti piace GeeksforGeeks e desideri contribuire puoi anche scrivere un articolo utilizzando
- contribuire.geeksforgeeks.org
- o invia il tuo articolo per posta a [email protected]. Guarda il tuo articolo apparire sulla pagina principale di GeeksforGeeks e aiuta altri Geeks.