Segmenti minimi nel display a sette segmenti

Segmenti minimi nel display a sette segmenti

Per visualizzare i numeri è possibile utilizzare un display a sette segmenti. Data una serie di N numeri naturali. Il compito è trovare il numero nell'array che utilizza il numero minimo di segmenti per visualizzare il numero. Se più numeri hanno un numero minimo di segmenti, viene generato il numero con l'indice più piccolo.

Display a sette segmenti

Esempi:   

Ingresso: arr[] = { 1 2 3 4 5 }.
Produzione : 1
Spiegazione: L'elemento che utilizza il numero minimo di segmenti è 1 (ovvero 2 segmenti)

Ingresso: arr[] = { 489 206 745 123 756 }.
Produzione : 745
Spiegazione: L'elemento con l'indice più piccolo che utilizza il numero minimo di segmenti è 745 (ovvero 12 segmenti)

L'idea è di precalcolare il numero di segmenti utilizzati dalle cifre da 0 a 9 e memorizzarlo. Ora per ogni elemento dell'array somma il numero di segmenti utilizzati da ciascuna cifra. Quindi trova l'elemento che utilizza il numero minimo di segmenti.

Il numero di segmenti utilizzati dalla cifra: 
0 -> 6 
1 -> 2 
2 -> 5 
3 -> 5 
4 -> 4 
5 -> 5 
6 -> 6 
7 -> 3 
8 -> 7 
9 -> 6

C++
   #include       using     namespace     std  ;   // Precomputed values of segment used by digit 0 to 9.   const     int     seg  [  10  ]     =     {     6       2       5       5       4       5       6       3       7       6  };   // Return the number of segments used by x.   int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x  )      {      count     +=     seg  [  x  %  10  ];      x     /=     10  ;      }      return     count  ;   }   int     elementMinSegment  (  vector   <  int  >     arr       int     n  )   {      // Initialising the minimum segment and minimum      // number index.      int     minseg     =     computeSegment  (  arr  [  0  ]);      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }   int     main  ()   {      vector   <  int  >     arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  size  ();         cout      < <     elementMinSegment  (  arr       n  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.io.*  ;   class   GFG     {       // Precomputed values of segment    // used by digit 0 to 9.   static     int     []  seg     =     {     6       2       5       5       4       5       6       3       7       6  };   // Return the number of segments used by x.   static     int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ]  ;      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ]  ;      x     /=     10  ;      }      return     count  ;   }   static     int     elementMinSegment  (  int     []  arr       int     n  )   {      // Initialising the minimum segment       // and minimum number index.      int     minseg     =     computeSegment  (  arr  [  0  ]  );      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]  );      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ]  ;   }      static     public     void     main     (  String  []     args  )      {      int     []  arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  elementMinSegment  (  arr       n  ));      }   }   
Python
   # Precomputed values of segment   # used by digit 0 to 9.   seg   =   [  6     2     5     5     4     5     6     3     7     6  ]   # Return the number of   # segments used by x.   def   computeSegment  (  x  ):   if  (  x   ==   0  ):   return   seg  [  0  ]   count   =   0   # Finding sum of the segment    # used by each digit of a number.   while  (  x  ):   count   +=   seg  [  x   %   10  ]   x   =   x   //   10   return   count   # function to return minimum sum index   def   elementMinSegment  (  arr     n  ):   # Initialising the minimum    # segment and minimum number index.   minseg   =   computeSegment  (  arr  [  0  ])   minindex   =   0   # Finding and comparing segment   # used by each number arr[i].   for   i   in   range  (  1     n  ):   temp   =   computeSegment  (  arr  [  i  ])   # If arr[i] used less segment   # then update minimum segment   # and minimum number.   if  (  temp    <   minseg  ):   minseg   =   temp   minindex   =   i   return   arr  [  minindex  ]   # Driver Code   arr   =   [  489     206     745     123     756  ]   n   =   len  (  arr  )   # function print required answer   print  (  elementMinSegment  (  arr     n  ))   # This code is contributed by   # Sanjit_Prasad   
C#
   using     System  ;   class     GFG  {       // Precomputed values of segment   // used by digit 0 to 9.   static     int     []  seg     =     new     int  [  10  ]{     6       2       5       5       4        5       6       3       7       6  };   // Return the number of segments used by x.   static     int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ];      x     /=     10  ;      }      return     count  ;   }   static     int     elementMinSegment  (  int     []  arr       int     n  )   {      // Initialising the minimum segment      // and minimum number index.      int     minseg     =     computeSegment  (  arr  [  0  ]);      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }      static     public     void     Main  ()      {      int     []  arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  Length  ;      Console  .  WriteLine  (  elementMinSegment  (  arr       n  ));      }   }   
JavaScript
   // Precomputed values of segment   // used by digit 0 to 9.   let     seg     =     [     6       2       5       5       4       5       6       3       7       6  ];   // Return the number of segments used by x.   function     computeSegment  (  x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      let     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ];      x     =     parseInt  (  x     /     10       10  );      }      return     count  ;   }   function     elementMinSegment  (  arr       n  )   {          // Initialising the minimum segment      // and minimum number index.      let     minseg     =     computeSegment  (  arr  [  0  ]);      let     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for  (  let     i     =     1  ;     i      <     n  ;     i  ++  )      {      let     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }   // Driver code   let     arr     =     [     489       206       745       123       756     ];   let     n     =     arr  .  length  ;   console  .  log  (  elementMinSegment  (  arr       n  ));   

Produzione
745 

Complessità temporale: O(n * log 10 N)
Spazio ausiliario: O(10)

Crea quiz