Reticoli:

Reticoli:

Sia L un insieme non vuoto chiuso rispetto a due operazioni binarie chiamate meet e join, indicate con ∧ e ∨. Allora L è detto reticolo se valgono i seguenti assiomi dove a, b, c sono elementi di L:

1) Diritto commutativo: -
(a) a ∧ b = b ∧ a (b) a ∨ b = b ∨ a

2) Diritto associativo:-
(a) (a ∧ b)∧ c = a ∧(b∧ c) (b) (a ∨ b) ∨ c = a ∨ (b ∨ c)

3) Legge di assorbimento: -
(a) un ∧ ( un ∨ b) = un (b) un ∨ ( un ∧ b) = un

Dualità:

Il duale di qualsiasi affermazione in un reticolo (L,∧ ,∨ ) è definito come un'affermazione ottenuta scambiando ∧ e ∨.

Per esempio , il duale di a ∧ (b ∨ a) = a ∨ a è a ∨ (b ∧ a )= a ∧ a

Reticoli delimitati:

Un reticolo L si dice limitato se ha l'elemento massimo 1 e l'elemento minimo 0.

Esempio:

  1. L'insieme di potenze P(S) dell'insieme S sotto le operazioni di intersezione e unione è un reticolo limitato poiché ∅ è l'elemento minimo di P(S) e l'insieme S è l'elemento maggiore di P(S).
  2. L'insieme dell'intero +ve I + sotto il solito ordine di ≦ non è un reticolo limitato poiché ha un elemento minimo 1 ma l'elemento maggiore non esiste.

Proprietà dei reticoli delimitati:

Se L è un reticolo limitato, allora per ogni elemento a ∈ L abbiamo le seguenti identità:

  1. un ∨ 1 = 1
  2. un ∧1= un
  3. un ∨0=un
  4. un ∧0=0

Teorema: Dimostrare che ogni reticolo finito L = {a 1 ,UN 2 ,UN 3 ....UN N } è limitato.

Prova: Abbiamo dato il reticolo finito:

L = {a 1 ,UN 2 ,UN 3 ....UN N }

Pertanto, l'elemento più grande dei Reticoli L è a 1 ∨A 2 ∨A 3∨....∨a N .

Inoltre, l'elemento minimo del reticolo L è a 1 ∧ a 2 ∧a 3 ∧....∧a N .

Poiché per ogni reticolo finito esistono gli elementi maggiori e minimi. Quindi L è limitato.

Sottoreticoli:

Consideriamo un sottoinsieme non vuoto L 1 di un reticolo L. Allora L 1 si dice sottoreticolo di L se L 1 esso stesso è un reticolo cioè l'operazione di L cioè a ∨ b ∈ L 1 e a ∧ b ∈ L 1 ogni volta che a ∈ L 1 e b ∈ L 1 .

Esempio: Consideriamo il reticolo di tutti i +ve interi I + nell’ambito dell’operazione di divisibilità. Il reticolo D N di tutti i divisori di n > 1 è un sottoreticolo di I + .

Determinare tutti i sottoreticoli di D 30 che contengono almeno quattro elementi, D 30 ={1,2,3,5,6,10,15,30}.

Soluzione: I sottoreticoli di D 30 che contengono almeno quattro elementi sono i seguenti:

1. {1, 2, 6, 30} 2. {1, 2, 3, 30}
3. {1, 5, 15, 30} 4. {1, 3, 6, 30}
5. {1, 5, 10, 30} 6. {1, 3, 15, 30}
7. {2, 6, 10, 30}

Reticoli isomorfi:

Due reticoli L 1 e io 2 sono detti reticoli isomorfi se esiste una biiezione da L 1 a l 2 cioè, f: L 1 ⟶L 2 , tale che f (a ∧ b) =f(a)∧ f(b) e f (a ∨ b) = f (a) ∨ f (b)

Esempio: Determina se i reticoli mostrati in figura sono isomorfi.

Soluzione: I reticoli mostrati in figura sono isomorfi. Considera la mappatura f = {(a, 1), (b, 2), (c, 3), (d, 4)}. Ad esempio f (b ∧ c) = f (a) = 1. Inoltre, abbiamo si ha f(b) ∧ f(c) = 2 ∧ 3 = 1

Reticoli

Reticolo distributivo:

Un reticolo L si dice reticolo distributivo se per ogni elemento a, b e c di L soddisfa le seguenti proprietà distributive:

  1. un ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
  2. un ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Se il reticolo L non soddisfa le proprietà sopra indicate, viene detto reticolo non distributivo.

Esempio:

  1. L'insieme di potenze P (S) dell'insieme S sotto l'operazione di intersezione e unione è una funzione distributiva. Da,
    un ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)
    e, anche a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c) per ogni insieme a, b e c di P(S).
  2. Il reticolo mostrato in figura II è un distributivo. Poiché soddisfa le proprietà distributive per tutte le triple ordinate prese da 1, 2, 3 e 4.
Reticoli

Complementi e reticoli complementati:

Sia L un reticolo limitato con limite inferiore o e limite superiore I. Sia a un elemento se L. Un elemento x in L è chiamato complemento di a se a ∨ x = I e a ∧ x = 0

Un reticolo L si dice complementare se L è limitato e ogni elemento di L ha un complemento.

Esempio: Determina il complemento di a e c in fig:

Reticoli

Soluzione: Il complemento di a è d. Poiché a ∨ d = 1 e a ∧ d = 0

Il complemento di c non esiste. Poiché non esiste alcun elemento c tale che c ∨ c'=1 e c ∧ c'= 0.

Reticolo modulare:

Un reticolo (L, ∧,∨) è detto reticolo modulare se a ∨ (b ∧ c) = (a ∨ b) ∧ c ogni volta che a ≦ c.

Prodotto diretto di reticoli:

Lasciamo (L 1 1 1 )e io 2 2 2 ) siano due reticoli. Allora (L, ∧,∨) è il prodotto diretto dei reticoli, dove L = L 1 xL 2 in cui l'operazione binaria ∨(join) e ∧(meet) su L sono tali che per ogni (a 1 ,B 1 ) e (a 2 ,B 2 ) nella l.

(UN 1 ,B 1 )∨(a 2 ,B 2 )=(a 1 1 UN 2 ,B 1 2 B 2 )
e (a 1 ,B 1 ) ∧ (a 2 ,B 2 )=(a 1 1 UN 2 ,B 1 2 B 2 ).

Esempio: Consideriamo un reticolo (L, ≦) come mostrato in fig. dove L = {1, 2}. Determinare i reticoli (L 2 , ≦), dove L 2 =L x L.

Reticoli

Soluzione: Il reticolo (L 2 , ≦) è mostrato in fig:

Reticoli