Analisi asintotica e confronto di algoritmi di ordinamento

Analisi asintotica e confronto di algoritmi di ordinamento

È un fatto ben noto che l'ordinamento per unione è più veloce dell'ordinamento per inserimento. Utilizzando analisi asintotica . possiamo dimostrare che il merge sort viene eseguito in tempo O(nlogn) e l'ordinamento per inserimento richiede O(n^2). È ovvio perché il merge sort utilizza un approccio divide et impera risolvendo ricorsivamente i problemi in cui l'ordinamento per inserimento segue un approccio incrementale. Se esaminiamo ulteriormente l’analisi della complessità temporale, scopriremo che l’ordinamento per inserzione non è poi così male. Sorprendentemente l'ordinamento per inserimento batte l'ordinamento per unione su dimensioni di input più piccole. Questo perché ci sono poche costanti che ignoriamo mentre deduciamo la complessità temporale. Su dimensioni di input maggiori dell'ordine 10^4 ciò non influenza il comportamento della nostra funzione. Ma quando le dimensioni dell’input scendono al di sotto, diciamo, di meno di 40, allora le costanti nell’equazione dominano la dimensione dell’input “n”. Fin qui tutto bene. Ma non ero soddisfatto di tale analisi matematica. Come studenti universitari di informatica dobbiamo credere nella scrittura del codice. Ho scritto un programma C per avere un'idea di come gli algoritmi competono tra loro per varie dimensioni di input. E anche il motivo per cui viene eseguita un'analisi matematica così rigorosa per stabilire le complessità del tempo di esecuzione di questi algoritmi di ordinamento.

Attuazione:

CPP
   #include         #include         #include         #include         #define MAX_ELEMENT_IN_ARRAY 1000000001   int     cmpfunc  (  const     void     *  a       const     void     *  b  )   {      // Compare function used by qsort      return     (  *  (  int     *  )  a     -     *  (  int     *  )  b  );   }   int     *  generate_random_array  (  int     n  )   {      srand  (  time  (  NULL  ));      int     *  a     =     malloc  (  sizeof  (  int  )     *     n  );      int     i  ;      for     (  i     =     0  ;     i      <     n  ;     ++  i  )      a  [  i  ]     =     rand  ()     %     MAX_ELEMENT_IN_ARRAY  ;      return     a  ;   }   int     *  copy_array  (  int     a  []     int     n  )   {      int     *  arr     =     malloc  (  sizeof  (  int  )     *     n  );      int     i  ;      for     (  i     =     0  ;     i      <     n  ;     ++  i  )      arr  [  i  ]     =     a  [  i  ];      return     arr  ;   }   // Code for Insertion Sort   void     insertion_sort_asc  (  int     a  []     int     start       int     end  )   {      int     i  ;      for     (  i     =     start     +     1  ;     i      <=     end  ;     ++  i  )      {      int     key     =     a  [  i  ];      int     j     =     i     -     1  ;      while     (  j     >=     start     &&     a  [  j  ]     >     key  )      {      a  [  j     +     1  ]     =     a  [  j  ];      --  j  ;      }      a  [  j     +     1  ]     =     key  ;      }   }   // Code for Merge Sort   void     merge  (  int     a  []     int     start       int     end       int     mid  )   {      int     i     =     start       j     =     mid     +     1       k     =     0  ;      int     *  aux     =     malloc  (  sizeof  (  int  )     *     (  end     -     start     +     1  ));      while     (  i      <=     mid     &&     j      <=     end  )      {      if     (  a  [  i  ]      <=     a  [  j  ])      aux  [  k  ++  ]     =     a  [  i  ++  ];      else      aux  [  k  ++  ]     =     a  [  j  ++  ];      }      while     (  i      <=     mid  )      aux  [  k  ++  ]     =     a  [  i  ++  ];      while     (  j      <=     end  )      aux  [  k  ++  ]     =     a  [  j  ++  ];      j     =     0  ;      for     (  i     =     start  ;     i      <=     end  ;     ++  i  )      a  [  i  ]     =     aux  [  j  ++  ];      free  (  aux  );   }   void     _merge_sort  (  int     a  []     int     start       int     end  )   {      if     (  start      <     end  )      {      int     mid     =     start     +     (  end     -     start  )     /     2  ;      _merge_sort  (  a       start       mid  );      _merge_sort  (  a       mid     +     1       end  );      merge  (  a       start       end       mid  );      }   }   void     merge_sort  (  int     a  []     int     n  )   {      return     _merge_sort  (  a       0       n     -     1  );   }   void     insertion_and_merge_sort_combine  (  int     a  []     int     start       int     end       int     k  )   {      // Performs insertion sort if size of array is less than or equal to k      // Otherwise uses mergesort      if     (  start      <     end  )      {      int     size     =     end     -     start     +     1  ;      if     (  size      <=     k  )      {      return     insertion_sort_asc  (  a       start       end  );      }      int     mid     =     start     +     (  end     -     start  )     /     2  ;      insertion_and_merge_sort_combine  (  a       start       mid       k  );      insertion_and_merge_sort_combine  (  a       mid     +     1       end       k  );      merge  (  a       start       end       mid  );      }   }   void     test_sorting_runtimes  (  int     size       int     num_of_times  )   {      // Measuring the runtime of the sorting algorithms      int     number_of_times     =     num_of_times  ;      int     t     =     number_of_times  ;      int     n     =     size  ;      double     insertion_sort_time     =     0       merge_sort_time     =     0  ;      double     merge_sort_and_insertion_sort_mix_time     =     0       qsort_time     =     0  ;      while     (  t  --  )      {      clock_t     start       end  ;      int     *  a     =     generate_random_array  (  n  );      int     *  b     =     copy_array  (  a       n  );      start     =     clock  ();      insertion_sort_asc  (  b       0       n     -     1  );      end     =     clock  ();      insertion_sort_time     +=     ((  double  )(  end     -     start  ))     /     CLOCKS_PER_SEC  ;      free  (  b  );      int     *  c     =     copy_array  (  a       n  );      start     =     clock  ();      merge_sort  (  c       n  );      end     =     clock  ();      merge_sort_time     +=     ((  double  )(  end     -     start  ))     /     CLOCKS_PER_SEC  ;      free  (  c  );      int     *  d     =     copy_array  (  a       n  );      start     =     clock  ();      insertion_and_merge_sort_combine  (  d       0       n     -     1       40  );      end     =     clock  ();      merge_sort_and_insertion_sort_mix_time     +=     ((  double  )(  end     -     start  ))     /     CLOCKS_PER_SEC  ;      free  (  d  );      start     =     clock  ();      qsort  (  a       n       sizeof  (  int  )     cmpfunc  );      end     =     clock  ();      qsort_time     +=     ((  double  )(  end     -     start  ))     /     CLOCKS_PER_SEC  ;      free  (  a  );      }      insertion_sort_time     /=     number_of_times  ;      merge_sort_time     /=     number_of_times  ;      merge_sort_and_insertion_sort_mix_time     /=     number_of_times  ;      qsort_time     /=     number_of_times  ;      printf  (  '  n  Time taken to sort:  n  '      '%-35s %f  n  '      '%-35s %f  n  '      '%-35s %f  n  '      '%-35s %f  nn  '        '(i)Insertion sort: '        insertion_sort_time        '(ii)Merge sort: '        merge_sort_time        '(iii)Insertion-mergesort-hybrid: '        merge_sort_and_insertion_sort_mix_time        '(iv)Qsort library function: '        qsort_time  );   }   int     main  (  int     argc       char     const     *  argv  [])   {      int     t  ;      scanf  (  '%d'       &  t  );      while     (  t  --  )      {      int     size       num_of_times  ;      scanf  (  '%d %d'       &  size       &  num_of_times  );      test_sorting_runtimes  (  size       num_of_times  );      }      return     0  ;   }   
Java
   import     java.util.Scanner  ;   import     java.util.Arrays  ;   import     java.util.Random  ;   public     class   SortingAlgorithms     {      // Maximum element in array      static     final     int     MAX_ELEMENT_IN_ARRAY     =     1000000001  ;      public     static     void     main  (  String  []     args  )     {      Scanner     scanner     =     new     Scanner  (  System  .  in  );      int     t     =     scanner  .  nextInt  ();      for     (  int     i     =     0  ;     i      <     t  ;     i  ++  )     {      int     size     =     scanner  .  nextInt  ();      int     num_of_times     =     scanner  .  nextInt  ();      testSortingRuntimes  (  size       num_of_times  );      }      scanner  .  close  ();      }          static     int  []     generateRandomArray  (  int     n  )     {      // Generate an array of n random integers.      int  []     arr     =     new     int  [  n  ]  ;      Random     random     =     new     Random  ();      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      arr  [  i  ]     =     random  .  nextInt  (  MAX_ELEMENT_IN_ARRAY  );      }      return     arr  ;      }      static     void     insertionSortAsc  (  int  []     a       int     start       int     end  )     {      // Perform an in-place insertion sort on a from start to end.      for     (  int     i     =     start     +     1  ;     i      <=     end  ;     i  ++  )     {      int     key     =     a  [  i  ]  ;      int     j     =     i     -     1  ;      while     (  j     >=     start     &&     a  [  j  ]     >     key  )     {      a  [  j     +     1  ]     =     a  [  j  ]  ;      j  --  ;      }      a  [  j     +     1  ]     =     key  ;      }      }      static     void     merge  (  int  []     a       int     start       int     end       int     mid  )     {      // Merge two sorted sublists of a.      // The first sublist is a[start:mid+1] and the second sublist is a[mid+1:end+1].      int  []     aux     =     new     int  [  end     -     start     +     1  ]  ;      int     i     =     start       j     =     mid     +     1       k     =     0  ;      while     (  i      <=     mid     &&     j      <=     end  )     {      if     (  a  [  i  ]      <=     a  [  j  ]  )     {      aux  [  k  ++]     =     a  [  i  ++]  ;      }     else     {      aux  [  k  ++]     =     a  [  j  ++]  ;      }      }      while     (  i      <=     mid  )     {      aux  [  k  ++]     =     a  [  i  ++]  ;      }      while     (  j      <=     end  )     {      aux  [  k  ++]     =     a  [  j  ++]  ;      }      System  .  arraycopy  (  aux       0       a       start       aux  .  length  );      }      static     void     mergeSort  (  int  []     a  )     {      // Perform an in-place merge sort on a.      mergeSortHelper  (  a       0       a  .  length     -     1  );      }      static     void     mergeSortHelper  (  int  []     a       int     start       int     end  )     {      // Recursive merge sort function.      if     (  start      <     end  )     {      int     mid     =     start     +     (  end     -     start  )     /     2  ;      mergeSortHelper  (  a       start       mid  );      mergeSortHelper  (  a       mid     +     1       end  );      merge  (  a       start       end       mid  );      }      }      static     void     insertionAndMergeSortCombine  (  int  []     a       int     start       int     end       int     k  )     {      /*    Perform an in-place sort on a from start to end.    If the size of the list is less than or equal to k use insertion sort.    Otherwise use merge sort.    */      if     (  start      <     end  )     {      int     size     =     end     -     start     +     1  ;      if     (  size      <=     k  )     {      insertionSortAsc  (  a       start       end  );      }     else     {      int     mid     =     start     +     (  end     -     start  )     /     2  ;      insertionAndMergeSortCombine  (  a       start       mid       k  );      insertionAndMergeSortCombine  (  a       mid     +     1       end       k  );      merge  (  a       start       end       mid  );      }      }      }      static     void     testSortingRuntimes  (  int     size       int     num_of_times  )     {      // Test the runtime of the sorting algorithms.      double     insertionSortTime     =     0  ;      double     mergeSortTime     =     0  ;      double     mergeSortAndInsertionSortMixTime     =     0  ;      double     qsortTime     =     0  ;      for     (  int     i     =     0  ;     i      <     num_of_times  ;     i  ++  )     {      int  []     a     =     generateRandomArray  (  size  );      int  []     b     =     Arrays  .  copyOf  (  a       a  .  length  );      long     start     =     System  .  currentTimeMillis  ();      insertionSortAsc  (  b       0       b  .  length     -     1  );      long     end     =     System  .  currentTimeMillis  ();      insertionSortTime     +=     end     -     start  ;      int  []     c     =     Arrays  .  copyOf  (  a       a  .  length  );      start     =     System  .  currentTimeMillis  ();      mergeSort  (  c  );      end     =     System  .  currentTimeMillis  ();      mergeSortTime     +=     end     -     start  ;      int  []     d     =     Arrays  .  copyOf  (  a       a  .  length  );      start     =     System  .  currentTimeMillis  ();      insertionAndMergeSortCombine  (  d       0       d  .  length     -     1       40  );      end     =     System  .  currentTimeMillis  ();      mergeSortAndInsertionSortMixTime     +=     end     -     start  ;      int  []     e     =     Arrays  .  copyOf  (  a       a  .  length  );      start     =     System  .  currentTimeMillis  ();      Arrays  .  sort  (  e  );      end     =     System  .  currentTimeMillis  ();      qsortTime     +=     end     -     start  ;      }      insertionSortTime     /=     num_of_times  ;      mergeSortTime     /=     num_of_times  ;      mergeSortAndInsertionSortMixTime     /=     num_of_times  ;      qsortTime     /=     num_of_times  ;      System  .  out  .  println  (  'nTime taken to sort:n'      +     '(i) Insertion sort: '     +     insertionSortTime     +     'n'      +     '(ii) Merge sort: '     +     mergeSortTime     +     'n'      +     '(iii) Insertion-mergesort-hybrid: '     +     mergeSortAndInsertionSortMixTime     +     'n'      +     '(iv) Qsort library function: '     +     qsortTime     +     'n'  );      }   }   
Python3
   import   time   import   random   import   copy   from   typing   import   List   # Maximum element in array   MAX_ELEMENT_IN_ARRAY   =   1000000001   def   generate_random_array  (  n  :   int  )   ->   List  [  int  ]:   #Generate a list of n random integers.   return   [  random  .  randint  (  0     MAX_ELEMENT_IN_ARRAY  )   for   _   in   range  (  n  )]   def   insertion_sort_asc  (  a  :   List  [  int  ]   start  :   int     end  :   int  )   ->   None  :   #Perform an in-place insertion sort on a from start to end.   for   i   in   range  (  start   +   1     end   +   1  ):   key   =   a  [  i  ]   j   =   i   -   1   while   j   >=   start   and   a  [  j  ]   >   key  :   a  [  j   +   1  ]   =   a  [  j  ]   j   -=   1   a  [  j   +   1  ]   =   key   def   merge  (  a  :   List  [  int  ]   start  :   int     end  :   int     mid  :   int  )   ->   None  :   #Merge two sorted sublists of a.   #The first sublist is a[start:mid+1] and the second sublist is a[mid+1:end+1].   aux   =   []   i   =   start   j   =   mid   +   1   while   i    <=   mid   and   j    <=   end  :   if   a  [  i  ]    <=   a  [  j  ]:   aux  .  append  (  a  [  i  ])   i   +=   1   else  :   aux  .  append  (  a  [  j  ])   j   +=   1   while   i    <=   mid  :   aux  .  append  (  a  [  i  ])   i   +=   1   while   j    <=   end  :   aux  .  append  (  a  [  j  ])   j   +=   1   a  [  start  :  end  +  1  ]   =   aux   def   _merge_sort  (  a  :   List  [  int  ]   start  :   int     end  :   int  )   ->   None  :   #Recursive merge sort function.   if   start    <   end  :   mid   =   start   +   (  end   -   start  )   //   2   _merge_sort  (  a     start     mid  )   _merge_sort  (  a     mid   +   1     end  )   merge  (  a     start     end     mid  )   def   merge_sort  (  a  :   List  [  int  ])   ->   None  :   #Perform an in-place merge sort on a.   _merge_sort  (  a     0     len  (  a  )   -   1  )   def   insertion_and_merge_sort_combine  (  a  :   List  [  int  ]   start  :   int     end  :   int     k  :   int  )   ->   None  :      '''    Perform an in-place sort on a from start to end.    If the size of the list is less than or equal to k use insertion sort.    Otherwise use merge sort.    '''   if   start    <   end  :   size   =   end   -   start   +   1   if   size    <=   k  :   insertion_sort_asc  (  a     start     end  )   else  :   mid   =   start   +   (  end   -   start  )   //   2   insertion_and_merge_sort_combine  (  a     start     mid     k  )   insertion_and_merge_sort_combine  (  a     mid   +   1     end     k  )   merge  (  a     start     end     mid  )   def   test_sorting_runtimes  (  size  :   int     num_of_times  :   int  )   ->   None  :   #Test the runtime of the sorting algorithms.   insertion_sort_time   =   0   merge_sort_time   =   0   merge_sort_and_insertion_sort_mix_time   =   0   qsort_time   =   0   for   _   in   range  (  num_of_times  ):   a   =   generate_random_array  (  size  )   b   =   copy  .  deepcopy  (  a  )   start   =   time  .  time  ()   insertion_sort_asc  (  b     0     len  (  b  )   -   1  )   end   =   time  .  time  ()   insertion_sort_time   +=   end   -   start   c   =   copy  .  deepcopy  (  a  )   start   =   time  .  time  ()   merge_sort  (  c  )   end   =   time  .  time  ()   merge_sort_time   +=   end   -   start   d   =   copy  .  deepcopy  (  a  )   start   =   time  .  time  ()   insertion_and_merge_sort_combine  (  d     0     len  (  d  )   -   1     40  )   end   =   time  .  time  ()   merge_sort_and_insertion_sort_mix_time   +=   end   -   start   start   =   time  .  time  ()   a  .  sort  ()   end   =   time  .  time  ()   qsort_time   +=   end   -   start   insertion_sort_time   /=   num_of_times   merge_sort_time   /=   num_of_times   merge_sort_and_insertion_sort_mix_time   /=   num_of_times   qsort_time   /=   num_of_times   print  (  f  '  n  Time taken to sort:  n  '   f  '(i)Insertion sort:   {  insertion_sort_time  }  n  '   f  '(ii)Merge sort:   {  merge_sort_time  }  n  '   f  '(iii)Insertion-mergesort-hybrid:   {  merge_sort_and_insertion_sort_mix_time  }  n  '   f  '(iv)Qsort library function:   {  qsort_time  }  n  '  )   def   main  ()   ->   None  :   t   =   int  (  input  ())   for   _   in   range  (  t  ):   size     num_of_times   =   map  (  int     input  ()  .  split  ())   test_sorting_runtimes  (  size     num_of_times  )   if   __name__   ==   '__main__'  :   main  ()   
JavaScript
   // Importing required modules   const     {     performance     }     =     require  (  'perf_hooks'  );   // Maximum element in array   const     MAX_ELEMENT_IN_ARRAY     =     1000000001  ;   // Function to generate a list of n random integers   function     generateRandomArray  (  n  )     {      return     Array  .  from  ({  length  :     n  }     ()     =>     Math  .  floor  (  Math  .  random  ()     *     MAX_ELEMENT_IN_ARRAY  ));   }   // Function to perform an in-place insertion sort on a from start to end   function     insertionSortAsc  (  a       start       end  )     {      for     (  let     i     =     start     +     1  ;     i      <=     end  ;     i  ++  )     {      let     key     =     a  [  i  ];      let     j     =     i     -     1  ;      while     (  j     >=     start     &&     a  [  j  ]     >     key  )     {      a  [  j     +     1  ]     =     a  [  j  ];      j     -=     1  ;      }      a  [  j     +     1  ]     =     key  ;      }   }   // Function to merge two sorted sublists of a   function     merge  (  a       start       end       mid  )     {      let     aux     =     [];      let     i     =     start  ;      let     j     =     mid     +     1  ;      while     (  i      <=     mid     &&     j      <=     end  )     {      if     (  a  [  i  ]      <=     a  [  j  ])     {      aux  .  push  (  a  [  i  ]);      i     +=     1  ;      }     else     {      aux  .  push  (  a  [  j  ]);      j     +=     1  ;      }      }      while     (  i      <=     mid  )     {      aux  .  push  (  a  [  i  ]);      i     +=     1  ;      }      while     (  j      <=     end  )     {      aux  .  push  (  a  [  j  ]);      j     +=     1  ;      }      for     (  let     i     =     start  ;     i      <=     end  ;     i  ++  )     {      a  [  i  ]     =     aux  [  i     -     start  ];      }   }   // Recursive merge sort function   function     _mergeSort  (  a       start       end  )     {      if     (  start      <     end  )     {      let     mid     =     start     +     Math  .  floor  ((  end     -     start  )     /     2  );      _mergeSort  (  a       start       mid  );      _mergeSort  (  a       mid     +     1       end  );      merge  (  a       start       end       mid  );      }   }   // Function to perform an in-place merge sort on a   function     mergeSort  (  a  )     {      _mergeSort  (  a       0       a  .  length     -     1  );   }   // Function to perform an in-place sort on a from start to end   function     insertionAndMergeSortCombine  (  a       start       end       k  )     {      if     (  start      <     end  )     {      let     size     =     end     -     start     +     1  ;      if     (  size      <=     k  )     {      insertionSortAsc  (  a       start       end  );      }     else     {      let     mid     =     start     +     Math  .  floor  ((  end     -     start  )     /     2  );      insertionAndMergeSortCombine  (  a       start       mid       k  );      insertionAndMergeSortCombine  (  a       mid     +     1       end       k  );      merge  (  a       start       end       mid  );      }      }   }   // Function to test the runtime of the sorting algorithms   function     testSortingRuntimes  (  size       numOfTimes  )     {      let     insertionSortTime     =     0  ;      let     mergeSortTime     =     0  ;      let     mergeSortAndInsertionSortMixTime     =     0  ;      let     qsortTime     =     0  ;      for     (  let     _     =     0  ;     _      <     numOfTimes  ;     _  ++  )     {      let     a     =     generateRandomArray  (  size  );      let     b     =     [...  a  ];      let     start     =     performance  .  now  ();      insertionSortAsc  (  b       0       b  .  length     -     1  );      let     end     =     performance  .  now  ();      insertionSortTime     +=     end     -     start  ;      let     c     =     [...  a  ];      start     =     performance  .  now  ();      mergeSort  (  c  );      end     =     performance  .  now  ();      mergeSortTime     +=     end     -     start  ;      let     d     =     [...  a  ];      start     =     performance  .  now  ();      insertionAndMergeSortCombine  (  d       0       d  .  length     -     1       40  );      end     =     performance  .  now  ();      mergeSortAndInsertionSortMixTime     +=     end     -     start  ;      start     =     performance  .  now  ();      a  .  sort  ((  a       b  )     =>     a     -     b  );      end     =     performance  .  now  ();      qsortTime     +=     end     -     start  ;      }      insertionSortTime     /=     numOfTimes  ;      mergeSortTime     /=     numOfTimes  ;      mergeSortAndInsertionSortMixTime     /=     numOfTimes  ;      qsortTime     /=     numOfTimes  ;      console  .  log  (  `nTime taken to sort:n(i)Insertion sort:   ${  insertionSortTime  }  n(ii)Merge sort:   ${  mergeSortTime  }  n(iii)Insertion-mergesort-hybrid:   ${  mergeSortAndInsertionSortMixTime  }  n(iv)Qsort library function:   ${  qsortTime  }  n`  );   }   // Main function   function     main  ()     {      let     t     =     parseInt  (  prompt  (  'Enter the number of test cases: '  ));      for     (  let     _     =     0  ;     _      <     t  ;     _  ++  )     {      let     size     =     parseInt  (  prompt  (  'Enter the size of the array: '  ));      let     numOfTimes     =     parseInt  (  prompt  (  'Enter the number of times to run the test: '  ));      testSortingRuntimes  (  size       numOfTimes  );      }   }   // Call the main function   main  ();   

Ho confrontato i tempi di esecuzione dei seguenti algoritmi:

  • Ordinamento di inserimento : L'algoritmo tradizionale senza modifiche/ottimizzazione. Funziona molto bene per dimensioni di input più piccole. E sì, batte l'ordinamento di unione
  • Va il destino : Segue l'approccio divide et impera. Per dimensioni di input dell'ordine di 10^5 questo algoritmo è la scelta giusta. Rende l'ordinamento per inserimento poco pratico per dimensioni di input così grandi.
  • Versione combinata dell'ordinamento per inserimento e dell'ordinamento per unione: Ho modificato leggermente la logica del merge sort per ottenere un tempo di esecuzione considerevolmente migliore per dimensioni di input più piccole. Come sappiamo, merge sort divide il suo input in due metà finché non diventa abbastanza banale ordinare gli elementi. Ma qui quando la dimensione dell'input scende al di sotto di una soglia come 'n' < 40 then this hybrid algorithm makes a call to traditional insertion sort procedure. From the fact that insertion sort runs faster on smaller inputs and merge sort runs faster on larger inputs this algorithm makes best use both the worlds.
  • Ordinamento rapido: Non ho implementato questa procedura. Questa è la funzione di libreria qsort() disponibile in . Ho considerato questo algoritmo per conoscere il significato dell'implementazione. Richiede una grande esperienza di programmazione per ridurre al minimo il numero di passaggi e sfruttare al massimo le primitive del linguaggio sottostante per implementare un algoritmo nel miglior modo possibile. Questo è il motivo principale per cui si consiglia di utilizzare le funzioni di libreria. Sono scritti per gestire qualsiasi cosa. Ottimizzano nella massima misura possibile. E prima che mi dimentichi della mia analisi, qsort() funziona in modo incredibilmente veloce praticamente su qualsiasi dimensione di input!

L'analisi:

  • Ingresso: L'utente deve fornire il numero di volte che desidera testare l'algoritmo corrispondente al numero di casi di test. Per ogni caso di test l'utente deve inserire due numeri interi separati da spazi che indicano la dimensione dell'input 'n' e il 'num_of_times' che indica il numero di volte in cui desidera eseguire l'analisi e calcolare la media. (Chiarimento: se 'num_of_times' è 10, ciascuno degli algoritmi specificati sopra viene eseguito 10 volte e viene presa la media. Questo viene fatto perché l'array di input viene generato in modo casuale corrispondente alla dimensione di input specificata. L'array di input potrebbe essere tutto ordinato. Potrebbe corrispondere al caso peggiore, ovvero l'ordine discendente. Per evitare tempi di esecuzione di tali array di input. L'algoritmo viene eseguito 'num_of_times' e viene presa la media.) routine clock() e la macro CLOCKS_PER_SEC viene utilizzata per misurare il tempo impiegato. Compilazione: ho scritto il codice sopra in ambiente Linux (Ubuntu 16.04 LTS). Copia lo snippet di codice sopra. Compilalo utilizzando la chiave gcc negli input come specificato e ammira la potenza degli algoritmi di ordinamento!
  • Risultati:  Come puoi vedere per dimensioni di input di piccole dimensioni, l'ordinamento per inserimento batte l'ordinamento per unione di 2 * 10^-6 sec. Ma questa differenza di tempo non è così significativa. D'altra parte l'algoritmo ibrido e la funzione di libreria qsort() funzionano entrambi altrettanto bene dell'ordinamento per inserzione. Analisi asintotica di Algos_0 La dimensione dell'input è ora aumentata di circa 100 volte da n = 30 a n = 1000. La differenza è ora tangibile. L'ordinamento per unione viene eseguito 10 volte più velocemente dell'ordinamento per inserimento. C'è ancora un legame tra le prestazioni dell'algoritmo ibrido e la routine qsort(). Ciò suggerisce che qsort() è implementato in un modo più o meno simile al nostro algoritmo ibrido, ovvero passando da un algoritmo all'altro per trarne il meglio. Analisi asintotica di Algos_1 Infine la dimensione dell’input viene aumentata a 10^5 (1 Lakh!) che è molto probabilmente la dimensione ideale utilizzata negli scenari pratici. Rispetto al precedente input n = 1000 dove il merge sort batte l'insertion sort correndo 10 volte più velocemente qui la differenza è ancora più significativa. L'ordinamento per unione batte l'ordinamento per inserimento di 100 volte! L'algoritmo ibrido che abbiamo scritto infatti esegue il tradizionale merge sort eseguendo 0,01 secondi più velocemente. E infine qsort() la funzione di libreria ci dimostra finalmente che anche l'implementazione gioca un ruolo cruciale mentre misura meticolosamente i tempi di esecuzione correndo 3 millisecondi più velocemente! :D
Analisi asintotica di Algos_2

Nota: non eseguire il programma precedente con n >= 10^6 poiché richiederà molta potenza di calcolo. Grazie e buona programmazione! :)

Crea quiz