A legnagyobb összegű összefüggő növekvő altömb

A legnagyobb összegű összefüggő növekvő altömb
Próbáld ki a GfG Practice-n #practiceLinkDiv { display: none !important; }

Adott egy n pozitív különböző egész számból álló tömb. A probléma az O(n) időbonyolultságban az összefüggő növekvő altömb legnagyobb összegének megtalálása.

Példák:  

    Input     : arr[] = {2 1 4 7 3 6}   
Output : 12
Contiguous Increasing subarray {1 4 7} = 12
Input : arr[] = {38 7 8 10 12}
Output : 38
Recommended Practice Kapzsi Róka Próbáld ki!

A egyszerű megoldás az, hogy generálja az összes altömböt és kiszámolják az összegüket. Végül adja vissza az altömböt a maximális összeggel. Ennek a megoldásnak az időbonyolultsága O(n 2 ).

An hatékony megoldás azon alapul, hogy minden elem pozitív. Tehát figyelembe vesszük a leghosszabb növekedésű résztömböket, és összehasonlítjuk az összegüket. A növekvő altömbök nem fedhetik át egymást, így időbonyolításunk O(n) lesz.

Algoritmus:  

 Let      arr     be the array of size      n     
Let result be the required sum
int largestSum(arr n)
result = INT_MIN // Initialize result
i = 0
while i < n
// Find sum of longest increasing subarray
// starting with i
curr_sum = arr[i];
while i+1 < n && arr[i] < arr[i+1]
curr_sum += arr[i+1];
i++;
// If current sum is greater than current
// result.
if result < curr_sum
result = curr_sum;
i++;
return result

Az alábbiakban bemutatjuk a fenti algoritmus megvalósítását.

C++
   // C++ implementation of largest sum   // contiguous increasing subarray   #include          using     namespace     std  ;   // Returns sum of longest   // increasing subarray.   int     largestSum  (  int     arr  []     int     n  )   {      // Initialize result      int     result     =     INT_MIN  ;      // Note that i is incremented      // by inner loop also so overall      // time complexity is O(n)      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // Find sum of longest      // increasing subarray      // starting from arr[i]      int     curr_sum     =     arr  [  i  ];      while     (  i     +     1      <     n     &&     arr  [  i     +     1  ]     >     arr  [  i  ])     {      curr_sum     +=     arr  [  i     +     1  ];      i  ++  ;      }      // Update result if required      if     (  curr_sum     >     result  )      result     =     curr_sum  ;      }      // required largest sum      return     result  ;   }   // Driver Code   int     main  ()   {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cout      < <     'Largest sum = '      < <     largestSum  (  arr       n  );      return     0  ;   }   
Java
   // Java implementation of largest sum   // contiguous increasing subarray   class   GFG     {      // Returns sum of longest      // increasing subarray.      static     int     largestSum  (  int     arr  []       int     n  )      {      // Initialize result      int     result     =     -  9999999  ;      // Note that i is incremented      // by inner loop also so overall      // time complexity is O(n)      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // Find sum of longest      // increasing subarray      // starting from arr[i]      int     curr_sum     =     arr  [  i  ]  ;      while     (  i     +     1      <     n     &&     arr  [  i     +     1  ]     >     arr  [  i  ]  )     {      curr_sum     +=     arr  [  i     +     1  ]  ;      i  ++  ;      }      // Update result if required      if     (  curr_sum     >     result  )      result     =     curr_sum  ;      }      // required largest sum      return     result  ;      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  'Largest sum = '      +     largestSum  (  arr       n  ));      }   }   
Python3
   # Python3 implementation of largest   # sum contiguous increasing subarray   # Returns sum of longest   # increasing subarray.   def   largestSum  (  arr     n  ):   # Initialize result   result   =   -  2147483648   # Note that i is incremented   # by inner loop also so overall   # time complexity is O(n)   for   i   in   range  (  n  ):   # Find sum of longest increasing   # subarray starting from arr[i]   curr_sum   =   arr  [  i  ]   while   (  i   +   1    <   n   and   arr  [  i   +   1  ]   >   arr  [  i  ]):   curr_sum   +=   arr  [  i   +   1  ]   i   +=   1   # Update result if required   if   (  curr_sum   >   result  ):   result   =   curr_sum   # required largest sum   return   result   # Driver Code   arr   =   [  1     1     4     7     3     6  ]   n   =   len  (  arr  )   print  (  'Largest sum = '     largestSum  (  arr     n  ))   # This code is contributed by Anant Agarwal.   
C#
   // C# implementation of largest sum   // contiguous increasing subarray   using     System  ;   class     GFG     {      // Returns sum of longest      // increasing subarray.      static     int     largestSum  (  int  []     arr       int     n  )      {      // Initialize result      int     result     =     -  9999999  ;      // Note that i is incremented by      // inner loop also so overall      // time complexity is O(n)      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // Find sum of longest increasing      // subarray starting from arr[i]      int     curr_sum     =     arr  [  i  ];      while     (  i     +     1      <     n     &&     arr  [  i     +     1  ]     >     arr  [  i  ])     {      curr_sum     +=     arr  [  i     +     1  ];      i  ++  ;      }      // Update result if required      if     (  curr_sum     >     result  )      result     =     curr_sum  ;      }      // required largest sum      return     result  ;      }      // Driver code      public     static     void     Main  ()      {      int  []     arr     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  Length  ;      Console  .  Write  (  'Largest sum = '      +     largestSum  (  arr       n  ));      }   }   // This code is contributed   // by Nitin Mittal.   
JavaScript
    <  script  >   // Javascript implementation of largest sum   // contiguous increasing subarray   // Returns sum of longest   // increasing subarray.   function     largestSum  (  arr       n  )   {      // Initialize result      var     result     =     -  1000000000  ;      // Note that i is incremented      // by inner loop also so overall      // time complexity is O(n)      for     (  var     i     =     0  ;     i      <     n  ;     i  ++  )      {      // Find sum of longest       // increasing subarray       // starting from arr[i]      var     curr_sum     =     arr  [  i  ];      while     (  i     +     1      <     n     &&         arr  [  i     +     1  ]     >     arr  [  i  ])      {      curr_sum     +=     arr  [  i     +     1  ];      i  ++  ;      }      // Update result if required      if     (  curr_sum     >     result  )      result     =     curr_sum  ;      }      // required largest sum      return     result  ;   }   // Driver Code   var     arr     =     [  1       1       4       7       3       6  ];   var     n     =     arr  .  length  ;   document  .  write  (     'Largest sum = '         +     largestSum  (  arr       n  ));   // This code is contributed by itsok.    <  /script>   
PHP
      // PHP implementation of largest sum   // contiguous increasing subarray   // Returns sum of longest    // increasing subarray.   function   largestSum  (  $arr     $n  )   {   $INT_MIN   =   0  ;   // Initialize result   $result   =   $INT_MIN  ;   // Note that i is incremented    // by inner loop also so overall   // time complexity is O(n)   for   (  $i   =   0  ;   $i    <   $n  ;   $i  ++  )   {   // Find sum of longest    // increasing subarray   // starting from arr[i]   $curr_sum   =   $arr  [  $i  ];   while   (  $i   +   1    <   $n   &&   $arr  [  $i   +   1  ]   >   $arr  [  $i  ])   {   $curr_sum   +=   $arr  [  $i   +   1  ];   $i  ++  ;   }   // Update result if required   if   (  $curr_sum   >   $result  )   $result   =   $curr_sum  ;   }   // required largest sum   return   $result  ;   }   // Driver Code   {   $arr   =   array  (  1     1     4     7     3     6  );   $n   =   sizeof  (  $arr  )   /   sizeof  (  $arr  [  0  ]);   echo   'Largest sum = '      largestSum  (  $arr     $n  );   return   0  ;   }   // This code is contributed by nitin mittal.   ?>   

Kimenet
Largest sum = 12 

Időbonyolultság: O(n)

 

Legnagyobb összegű összefüggő növekvő alrendszer használata Rekurzió

Rekurzív algoritmus a probléma megoldására:

Íme a probléma lépésről lépésre történő algoritmusa:

  1. A funkció "legnagyobb összeg" tömböt vesz fel 'arr' és a mérete 'n'.
  2. Ha   'n==1' majd vissza arr[0]th elem.
  3. Ha 'n != 1' majd egy rekurzív meghívja a függvényt "legnagyobb összeg"   hogy megtaláljuk az altömb legnagyobb összegét 'arr[0...n-1]' az utolsó elemet kivéve "arr[n-1]" .
  4.  A második utolsó elemmel kezdődő tömb fordított sorrendben történő iterálásával számítsa ki a növekvő altömb összegét, amely "arr[n-1]" . Ha az egyik elem kisebb, mint a következő, akkor hozzá kell adni az aktuális összeghez. Ellenkező esetben a hurkot meg kell szakítani.
  5. Ezután adja vissza a legnagyobb összeg maximumát, pl. ' return max(max_sum curr_sum);' .
     

Íme a fenti algoritmus megvalósítása:

C++
   #include          using     namespace     std  ;   // Recursive function to find the largest sum   // of contiguous increasing subarray   int     largestSum  (  int     arr  []     int     n  )   {      // Base case      if     (  n     ==     1  )      return     arr  [  0  ];      // Recursive call to find the largest sum      int     max_sum     =     max  (  largestSum  (  arr       n     -     1  )     arr  [  n     -     1  ]);      // Compute the sum of the increasing subarray      int     curr_sum     =     arr  [  n     -     1  ];      for     (  int     i     =     n     -     2  ;     i     >=     0  ;     i  --  )     {      if     (  arr  [  i  ]      <     arr  [  i     +     1  ])      curr_sum     +=     arr  [  i  ];      else      break  ;      }      // Return the maximum of the largest sum so far      // and the sum of the current increasing subarray      return     max  (  max_sum       curr_sum  );   }   // Driver Code   int     main  ()   {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cout      < <     'Largest sum = '      < <     largestSum  (  arr       n  );      return     0  ;   }   // This code is contributed by Vaibhav Saroj.   
C
   #include         #include         // Returns sum of longest increasing subarray   int     largestSum  (  int     arr  []     int     n  )   {      // Initialize result      int     result     =     INT_MIN  ;      // Note that i is incremented      // by inner loop also so overall      // time complexity is O(n)      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // Find sum of longest      // increasing subarray      // starting from arr[i]      int     curr_sum     =     arr  [  i  ];      while     (  i     +     1      <     n     &&     arr  [  i     +     1  ]     >     arr  [  i  ])     {      curr_sum     +=     arr  [  i     +     1  ];      i  ++  ;      }      // Update result if required      if     (  curr_sum     >     result  )      result     =     curr_sum  ;      }      // required largest sum      return     result  ;   }   // Driver code   int     main  ()   {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      printf  (  'Largest sum = %d  n  '       largestSum  (  arr       n  ));      return     0  ;   }   // This code is contributed by Vaibhav Saroj.   
Java
   /*package whatever //do not write package name here */   import     java.util.*  ;   public     class   Main     {      // Recursive function to find the largest sum      // of contiguous increasing subarray      public     static     int     largestSum  (  int     arr  []       int     n  )      {      // Base case      if     (  n     ==     1  )      return     arr  [  0  ]  ;      // Recursive call to find the largest sum      int     max_sum      =     Math  .  max  (  largestSum  (  arr       n     -     1  )     arr  [  n     -     1  ]  );      // Compute the sum of the increasing subarray      int     curr_sum     =     arr  [  n     -     1  ]  ;      for     (  int     i     =     n     -     2  ;     i     >=     0  ;     i  --  )     {      if     (  arr  [  i  ]      <     arr  [  i     +     1  ]  )      curr_sum     +=     arr  [  i  ]  ;      else      break  ;      }      // Return the maximum of the largest sum so far      // and the sum of the current increasing subarray      return     Math  .  max  (  max_sum       curr_sum  );      }      // Driver code      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  'Largest sum = '      +     largestSum  (  arr       n  ));      }   }   // This code is contributed by Vaibhav Saroj.   
Python
   def   largestSum  (  arr     n  ):   # Base case   if   n   ==   1  :   return   arr  [  0  ]   # Recursive call to find the largest sum   max_sum   =   max  (  largestSum  (  arr     n  -  1  )   arr  [  n  -  1  ])   # Compute the sum of the increasing subarray   curr_sum   =   arr  [  n  -  1  ]   for   i   in   range  (  n  -  2     -  1     -  1  ):   if   arr  [  i  ]    <   arr  [  i  +  1  ]:   curr_sum   +=   arr  [  i  ]   else  :   break   # Return the maximum of the largest sum so far   # and the sum of the current increasing subarray   return   max  (  max_sum     curr_sum  )   # Driver code   arr   =   [  1     1     4     7     3     6  ]   n   =   len  (  arr  )   print  (  'Largest sum ='     largestSum  (  arr     n  ))   # This code is contributed by Vaibhav Saroj.   
C#
   // C# program for above approach   using     System  ;   public     static     class     GFG     {      // Recursive function to find the largest sum      // of contiguous increasing subarray      public     static     int     largestSum  (  int  []     arr       int     n  )      {      // Base case      if     (  n     ==     1  )      return     arr  [  0  ];      // Recursive call to find the largest sum      int     max_sum      =     Math  .  Max  (  largestSum  (  arr       n     -     1  )     arr  [  n     -     1  ]);      // Compute the sum of the increasing subarray      int     curr_sum     =     arr  [  n     -     1  ];      for     (  int     i     =     n     -     2  ;     i     >=     0  ;     i  --  )     {      if     (  arr  [  i  ]      <     arr  [  i     +     1  ])      curr_sum     +=     arr  [  i  ];      else      break  ;      }      // Return the maximum of the largest sum so far      // and the sum of the current increasing subarray      return     Math  .  Max  (  max_sum       curr_sum  );      }      // Driver code      public     static     void     Main  ()      {      int  []     arr     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  Length  ;      Console  .  WriteLine  (  'Largest sum = '      +     largestSum  (  arr       n  ));      }   }   // This code is contributed by Utkarsh Kumar   
JavaScript
   function     largestSum  (  arr       n  )     {      // Base case      if     (  n     ==     1  )      return     arr  [  0  ];      // Recursive call to find the largest sum      let     max_sum     =     Math  .  max  (  largestSum  (  arr       n  -  1  )     arr  [  n  -  1  ]);      // Compute the sum of the increasing subarray      let     curr_sum     =     arr  [  n  -  1  ];      for     (  let     i     =     n  -  2  ;     i     >=     0  ;     i  --  )     {      if     (  arr  [  i  ]      <     arr  [  i  +  1  ])      curr_sum     +=     arr  [  i  ];      else      break  ;      }      // Return the maximum of the largest sum so far      // and the sum of the current increasing subarray      return     Math  .  max  (  max_sum       curr_sum  );   }   // Driver Code   let     arr     =     [  1       1       4       7       3       6  ];   let     n     =     arr  .  length  ;   console  .  log  (  'Largest sum = '     +     largestSum  (  arr       n  ));   
PHP
      // Recursive function to find the largest sum   // of contiguous increasing subarray   function   largestSum  (  $arr     $n  )   {   // Base case   if   (  $n   ==   1  )   return   $arr  [  0  ];   // Recursive call to find the largest sum   $max_sum   =   max  (  largestSum  (  $arr     $n  -  1  )   $arr  [  $n  -  1  ]);   // Compute the sum of the increasing subarray   $curr_sum   =   $arr  [  $n  -  1  ];   for   (  $i   =   $n  -  2  ;   $i   >=   0  ;   $i  --  )   {   if   (  $arr  [  $i  ]    <   $arr  [  $i  +  1  ])   $curr_sum   +=   $arr  [  $i  ];   else   break  ;   }   // Return the maximum of the largest sum so far   // and the sum of the current increasing subarray   return   max  (  $max_sum     $curr_sum  );   }   // Driver Code   $arr   =   array  (  1     1     4     7     3     6  );   $n   =   count  (  $arr  );   echo   'Largest sum = '   .   largestSum  (  $arr     $n  );   ?>   

Kimenet
Largest sum = 12 

Időbeli összetettség: O(n^2).
A tér összetettsége: On).

A legnagyobb összegű összefüggő növekvő altömb Kadane algoritmusát használva:-

A legnagyobb összegű altömb meghatározásához Kadane-féle megközelítést alkalmazunk, azonban ez feltételezi, hogy a tömb pozitív és negatív értékeket is tartalmaz. Ebben az esetben meg kell változtatnunk az algoritmust úgy, hogy az csak összefüggő növekvő altömbökön működjön.

Az alábbiakban bemutatjuk, hogyan módosíthatjuk Kadane algoritmusát, hogy megtaláljuk a legnagyobb összegű összefüggő növekvő altömböt:

  1. A tömb első eleméhez inicializáljon két változót: max_sum és curr_sum.
  2. A második elemtől kiindulva görgessen végig a tömbön.
  3. ha az aktuális elem nagyobb, mint az előző elem, adja hozzá a curr_sum értékhez. Ellenkező esetben állítsa vissza a curr_sum-ot az aktuális elemre.
  4. Ha a curr_sum nagyobb, mint a max_sum, frissítse a max_sum értéket.
  5. A ciklus után a max_sum a legnagyobb összeget fogja tartalmazni a növekvő növekvő altömbben.
     
C++
   #include          using     namespace     std  ;   int     largest_sum_contiguous_increasing_subarray  (  int     arr  []     int     n  )     {      int     max_sum     =     arr  [  0  ];      int     curr_sum     =     arr  [  0  ];      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      if     (  arr  [  i  ]     >     arr  [  i  -1  ])     {      curr_sum     +=     arr  [  i  ];      }      else     {      curr_sum     =     arr  [  i  ];      }      if     (  curr_sum     >     max_sum  )     {      max_sum     =     curr_sum  ;      }      }      return     max_sum  ;   }   int     main  ()     {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     sizeof  (  arr  )  /  sizeof  (  arr  [  0  ]);      cout      < <     largest_sum_contiguous_increasing_subarray  (  arr       n  )      < <     endl  ;     // Output: 44 (1+2+3+5+7+8+9+10)      return     0  ;   }   
Java
   public     class   Main     {      public     static     int     largestSumContiguousIncreasingSubarray  (  int  []     arr           int     n  )     {      int     maxSum     =     arr  [  0  ]  ;      int     currSum     =     arr  [  0  ]  ;      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      if     (  arr  [  i  ]     >     arr  [  i  -  1  ]  )     {      currSum     +=     arr  [  i  ]  ;      }      else     {      currSum     =     arr  [  i  ]  ;      }      if     (  currSum     >     maxSum  )     {      maxSum     =     currSum  ;      }      }      return     maxSum  ;      }      public     static     void     main  (  String  []     args  )     {      int  []     arr     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  largestSumContiguousIncreasingSubarray  (  arr        n  ));     // Output: 44 (1+2+3+5+7+8+9+10)      }   }   
Python3
   def   largest_sum_contiguous_increasing_subarray  (  arr     n  ):   max_sum   =   arr  [  0  ]   curr_sum   =   arr  [  0  ]   for   i   in   range  (  1     n  ):   if   arr  [  i  ]   >   arr  [  i  -  1  ]:   curr_sum   +=   arr  [  i  ]   else  :   curr_sum   =   arr  [  i  ]   if   curr_sum   >   max_sum  :   max_sum   =   curr_sum   return   max_sum   arr   =   [  1     1     4     7     3     6  ]   n   =   len  (  arr  )   print  (  largest_sum_contiguous_increasing_subarray  (  arr     n  ))   #output 12 (1+4+7)   
C#
   using     System  ;   class     GFG     {      // Function to find the largest sum of a contiguous      // increasing subarray      static     int      LargestSumContiguousIncreasingSubarray  (  int  []     arr       int     n  )      {      int     maxSum     =     arr  [  0  ];     // Initialize the maximum sum      // and current sum      int     currSum     =     arr  [  0  ];      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      if     (  arr  [  i  ]      >     arr  [  i     -     1  ])     // Check if the current      // element is greater than the      // previous element      {      currSum      +=     arr  [  i  ];     // If increasing add the      // element to the current sum      }      else     {      currSum      =     arr  [  i  ];     // If not increasing start a      // new increasing subarray      // from the current element      }      if     (  currSum      >     maxSum  )     // Update the maximum sum if the      // current sum is greater      {      maxSum     =     currSum  ;      }      }      return     maxSum  ;      }      static     void     Main  ()      {      int  []     arr     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  Length  ;      Console  .  WriteLine  (      LargestSumContiguousIncreasingSubarray  (  arr       n  ));      }   }   // This code is contributed by akshitaguprzj3   
JavaScript
      // Javascript code for above approach          // Function to find the largest sum of a contiguous      // increasing subarray      function     LargestSumContiguousIncreasingSubarray  (  arr       n  )      {      let     maxSum     =     arr  [  0  ];     // Initialize the maximum sum      // and current sum      let     currSum     =     arr  [  0  ];          for     (  let     i     =     1  ;     i      <     n  ;     i  ++  )     {      if     (  arr  [  i  ]      >     arr  [  i     -     1  ])     // Check if the current      // element is greater than the      // previous element      {      currSum      +=     arr  [  i  ];     // If increasing add the      // element to the current sum      }      else     {      currSum      =     arr  [  i  ];     // If not increasing start a      // new increasing subarray      // from the current element      }          if     (  currSum      >     maxSum  )     // Update the maximum sum if the      // current sum is greater      {      maxSum     =     currSum  ;      }      }          return     maxSum  ;      }          let     arr     =     [     1       1       4       7       3       6     ];      let     n     =     arr  .  length  ;      console  .  log  (  LargestSumContiguousIncreasingSubarray  (  arr       n  ));              // This code is contributed by Pushpesh Raj       

Kimenet
12 

Időbonyolultság: O(n).
A tér összetettsége: O(1).

Kvíz létrehozása