Legnagyobb szám a BST-ben, amely kisebb, mint k, vagy egyenlő azzal

Legnagyobb szám a BST-ben, amely kisebb, mint k, vagy egyenlő azzal

Adott a gyökér Bináris keresőfa és egy egész szám k . A feladat az, hogy megtaláljuk a legnagyobb szám a bináris keresőfában kevesebb mint vagy egyenlő k-ra, ha nem létezik ilyen elem, nyomd meg a -1-et. 

Példák:  

Bemenet:



Legnagyobb-szám a BST-ben, amely-kisebb-vagy-egyenlő-k-1

Kimenet: 21
Magyarázat: A 19 és 25 a 21-hez legközelebb eső két szám, a 19 pedig a legnagyobb szám, amelynek értéke kisebb vagy egyenlő, mint 21.

Bemenet:

Legnagyobb-szám a BST-ben, amely-kissebb-vagy-egyenlő-k-2

Kimenet: 3
Magyarázat: A 3 és 5 a 4-hez legközelebb eső két szám, a 3 pedig a legnagyobb szám, amelynek értéke kisebb vagy egyenlő 4-el.

Tartalomjegyzék

[Naiv megközelítés] Rekurzió használata - O(h) idő és O(h) tér

Az ötlet az, hogy a gyökér és hasonlítsa össze az értékét k-val. Ha a csomópont értéke nagyobb, mint k, lépjen a bal oldali részfára. Ellenkező esetben keresse meg a legnagyobb szám értékét, amely kisebb, mint k egyenlő jobb oldali részfa . Ha a jobb oldali részfa -1-et ad vissza (azaz nem létezik ilyen érték), akkor az aktuális csomópont értékét adja vissza. Ellenkező esetben a jobb oldali részfa által visszaadott értéket adja vissza (mivel nagyobb lesz, mint az aktuális csomópont értéke, de kisebb, mint k).

C++
   // C++ code to find the largest value    // smaller than or equal to k using recursion   #include          using     namespace     std  ;   class     Node     {   public  :      int     data  ;      Node     *  left       *  right  ;          Node  (  int     val  ){      data     =     val  ;      left     =     nullptr  ;      right     =     nullptr  ;      }   };   // function to find max value less than k   int     findMaxFork  (  Node  *     root       int     k  )     {          // Base cases      if     (  root     ==     nullptr  )      return     -1  ;      if     (  root  ->  data     ==     k  )      return     k  ;      // If root's value is smaller      // try in right subtree      else     if     (  root  ->  data      <     k  )     {          int     x     =     findMaxFork  (  root  ->  right       k  );      if     (  x     ==     -1  )      return     root  ->  data  ;      else      return     x  ;      }      // If root's data is greater       // return value from left subtree.      return     findMaxFork  (  root  ->  left       k  );      }   int     main  ()     {          int     k     =     24  ;      // creating following BST      //      // 5      // /        // 2 12      // /  /        // 1 3 9 21      // /        // 19 25      Node  *     root     =     new     Node  (  5  );      root  ->  left     =     new     Node  (  2  );      root  ->  left  ->  left     =     new     Node  (  1  );      root  ->  left  ->  right     =     new     Node  (  3  );      root  ->  right     =     new     Node  (  12  );      root  ->  right  ->  left     =     new     Node  (  9  );      root  ->  right  ->  right     =     new     Node  (  21  );      root  ->  right  ->  right  ->  left     =     new     Node  (  19  );      root  ->  right  ->  right  ->  right     =     new     Node  (  25  );          cout      < <     findMaxFork  (  root       k  );      return     0  ;   }   
Java
   // Java code to find the largest value    // smaller than or equal to k using recursion   class   Node     {      int     data  ;      Node     left       right  ;          Node  (  int     val  )     {      data     =     val  ;      left     =     null  ;      right     =     null  ;      }   }   class   GfG     {          // function to find max value less than k      static     int     findMaxFork  (  Node     root       int     k  )     {          // Base cases      if     (  root     ==     null  )      return     -  1  ;      if     (  root  .  data     ==     k  )      return     k  ;      // If root's value is smaller      // try in right subtree      else     if     (  root  .  data      <     k  )     {      int     x     =     findMaxFork  (  root  .  right       k  );      if     (  x     ==     -  1  )      return     root  .  data  ;      else      return     x  ;      }      // If root's data is greater      // return value from left subtree.      return     findMaxFork  (  root  .  left       k  );      }      public     static     void     main  (  String  []     args  )     {      int     k     =     24  ;      // creating following BST      //      // 5      // /        // 2 12      // /  /        // 1 3 9 21      // /        // 19 25      Node     root     =     new     Node  (  5  );      root  .  left     =     new     Node  (  2  );      root  .  left  .  left     =     new     Node  (  1  );      root  .  left  .  right     =     new     Node  (  3  );      root  .  right     =     new     Node  (  12  );      root  .  right  .  left     =     new     Node  (  9  );      root  .  right  .  right     =     new     Node  (  21  );      root  .  right  .  right  .  left     =     new     Node  (  19  );      root  .  right  .  right  .  right     =     new     Node  (  25  );      System  .  out  .  println  (  findMaxFork  (  root       k  ));      }   }   
Python
   # Python code to find the largest value    # smaller than or equal to k using recursion   class   Node  :   def   __init__  (  self     val  ):   self  .  data   =   val   self  .  left   =   None   self  .  right   =   None   # function to find max value less than k   def   findMaxFork  (  root     k  ):   # Base cases   if   root   is   None  :   return   -  1   if   root  .  data   ==   k  :   return   k   # If root's value is smaller   # try in right subtree   elif   root  .  data    <   k  :   x   =   findMaxFork  (  root  .  right     k  )   if   x   ==   -  1  :   return   root  .  data   else  :   return   x   # If root's data is greater   # return value from left subtree.   return   findMaxFork  (  root  .  left     k  )   if   __name__   ==   '__main__'  :   k   =   24   # creating following BST   #   # 5   # /     # 2 12   # /  /     # 1 3 9 21   # /     # 19 25   root   =   Node  (  5  )   root  .  left   =   Node  (  2  )   root  .  left  .  left   =   Node  (  1  )   root  .  left  .  right   =   Node  (  3  )   root  .  right   =   Node  (  12  )   root  .  right  .  left   =   Node  (  9  )   root  .  right  .  right   =   Node  (  21  )   root  .  right  .  right  .  left   =   Node  (  19  )   root  .  right  .  right  .  right   =   Node  (  25  )   print  (  findMaxFork  (  root     k  ))   
C#
   // C# code to find the largest value    // smaller than or equal to k using recursion   using     System  ;   class     Node     {      public     int     data  ;      public     Node     left       right  ;          public     Node  (  int     val  )     {      data     =     val  ;      left     =     null  ;      right     =     null  ;      }   }   class     GfG     {          // function to find max value less than k      static     int     FindMaxFork  (  Node     root       int     k  )     {          // Base cases      if     (  root     ==     null  )      return     -  1  ;      if     (  root  .  data     ==     k  )      return     k  ;      // If root's value is smaller      // try in right subtree      else     if     (  root  .  data      <     k  )     {      int     x     =     FindMaxFork  (  root  .  right       k  );      if     (  x     ==     -  1  )      return     root  .  data  ;      else      return     x  ;      }      // If root's data is greater      // return value from left subtree.      return     FindMaxFork  (  root  .  left       k  );      }      static     void     Main  ()     {      int     k     =     24  ;      // creating following BST      //      // 5      // /        // 2 12      // /  /        // 1 3 9 21      // /        // 19 25      Node     root     =     new     Node  (  5  );      root  .  left     =     new     Node  (  2  );      root  .  left  .  left     =     new     Node  (  1  );      root  .  left  .  right     =     new     Node  (  3  );      root  .  right     =     new     Node  (  12  );      root  .  right  .  left     =     new     Node  (  9  );      root  .  right  .  right     =     new     Node  (  21  );      root  .  right  .  right  .  left     =     new     Node  (  19  );      root  .  right  .  right  .  right     =     new     Node  (  25  );      Console  .  WriteLine  (  FindMaxFork  (  root       k  ));      }   }   
JavaScript
   // JavaScript code to find the largest value    // smaller than or equal to k using recursion   class     Node     {      constructor  (  val  )     {      this  .  data     =     val  ;      this  .  left     =     null  ;      this  .  right     =     null  ;      }   }   // function to find max value less than k   function     findMaxFork  (  root       k  )     {          // Base cases      if     (  root     ===     null  )      return     -  1  ;      if     (  root  .  data     ===     k  )      return     k  ;      // If root's value is smaller      // try in right subtree      else     if     (  root  .  data      <     k  )     {      let     x     =     findMaxFork  (  root  .  right       k  );      if     (  x     ===     -  1  )      return     root  .  data  ;      else      return     x  ;      }      // If root's data is greater      // return value from left subtree.      return     findMaxFork  (  root  .  left       k  );   }   let     k     =     24  ;   // creating following BST   //   // 5   // /     // 2 12   // /  /     // 1 3 9 21   // /     // 19 25   let     root     =     new     Node  (  5  );   root  .  left     =     new     Node  (  2  );   root  .  left  .  left     =     new     Node  (  1  );   root  .  left  .  right     =     new     Node  (  3  );   root  .  right     =     new     Node  (  12  );   root  .  right  .  left     =     new     Node  (  9  );   root  .  right  .  right     =     new     Node  (  21  );   root  .  right  .  right  .  left     =     new     Node  (  19  );   root  .  right  .  right  .  right     =     new     Node  (  25  );   console  .  log  (  findMaxFork  (  root       k  ));   

Kimenet
21 

[Várható megközelítés] Iteráció használata - O(h) idő és O(1) tér

Az ötlet az, hogy a gyökér és hasonlítsa össze az értékét azzal k . Ha a csomópont értéke <= k frissítse az eredmény értékét a root értékére, és lépjen a jobbra részfa másik mozgatni a balra részfa. Által iteratívan Ha ezt a műveletet az összes csomóponton alkalmazzuk, minimálisra csökkenthetjük a szükséges helyet rekurzió verem.

C++
   // C++ code to find the largest value    // smaller than or equal to k using recursion   #include          using     namespace     std  ;   class     Node     {   public  :      int     data  ;      Node     *  left       *  right  ;          Node  (  int     val  ){      data     =     val  ;      left     =     nullptr  ;      right     =     nullptr  ;      }   };   // function to find max value less than k   int     findMaxFork  (  Node  *     root       int     k  )     {          int     result     =     -1  ;          // Start from root and keep looking for larger       while     (  root     !=     nullptr  )     {      // If root is smaller go to right side      if     (  root  ->  data      <=     k  ){      result     =     root  ->  data  ;      root     =     root  ->  right  ;      }      // If root is greater go to left side       else      root     =     root  ->  left  ;      }          return     result  ;   }   int     main  ()     {          int     k     =     24  ;      // creating following BST      //      // 5      // /        // 2 12      // /  /        // 1 3 9 21      // /        // 19 25      Node  *     root     =     new     Node  (  5  );      root  ->  left     =     new     Node  (  2  );      root  ->  left  ->  left     =     new     Node  (  1  );      root  ->  left  ->  right     =     new     Node  (  3  );      root  ->  right     =     new     Node  (  12  );      root  ->  right  ->  left     =     new     Node  (  9  );      root  ->  right  ->  right     =     new     Node  (  21  );      root  ->  right  ->  right  ->  left     =     new     Node  (  19  );      root  ->  right  ->  right  ->  right     =     new     Node  (  25  );          cout      < <     findMaxFork  (  root       k  );      return     0  ;   }   
Java
   // Java code to find the largest value    // smaller than or equal to k using recursion   class   Node     {      int     data  ;      Node     left       right  ;          Node  (  int     val  )     {      data     =     val  ;      left     =     null  ;      right     =     null  ;      }   }   class   GfG     {          // function to find max value less than k      static     int     findMaxFork  (  Node     root       int     k  )     {      int     result     =     -  1  ;          // Start from root and keep looking for larger       while     (  root     !=     null  )     {      // If root is smaller go to right side      if     (  root  .  data      <=     k  )     {      result     =     root  .  data  ;      root     =     root  .  right  ;      }      // If root is greater go to left side       else     {      root     =     root  .  left  ;      }      }          return     result  ;      }      public     static     void     main  (  String  []     args  )     {      int     k     =     24  ;      // creating following BST      //      // 5      // /        // 2 12      // /  /        // 1 3 9 21      // /        // 19 25      Node     root     =     new     Node  (  5  );      root  .  left     =     new     Node  (  2  );      root  .  left  .  left     =     new     Node  (  1  );      root  .  left  .  right     =     new     Node  (  3  );      root  .  right     =     new     Node  (  12  );      root  .  right  .  left     =     new     Node  (  9  );      root  .  right  .  right     =     new     Node  (  21  );      root  .  right  .  right  .  left     =     new     Node  (  19  );      root  .  right  .  right  .  right     =     new     Node  (  25  );      System  .  out  .  println  (  findMaxFork  (  root       k  ));      }   }   
Python
   # Python code to find the largest value    # smaller than or equal to k using recursion   class   Node  :   def   __init__  (  self     val  ):   self  .  data   =   val   self  .  left   =   None   self  .  right   =   None   # function to find max value less than k   def   findMaxFork  (  root     k  ):   result   =   -  1   # Start from root and keep looking for larger    while   root   is   not   None  :   # If root is smaller go to right side   if   root  .  data    <=   k  :   result   =   root  .  data   root   =   root  .  right   # If root is greater go to left side    else  :   root   =   root  .  left   return   result   if   __name__   ==   '__main__'  :   k   =   24   # creating following BST   #   # 5   # /     # 2 12   # /  /     # 1 3 9 21   # /     # 19 25   root   =   Node  (  5  )   root  .  left   =   Node  (  2  )   root  .  left  .  left   =   Node  (  1  )   root  .  left  .  right   =   Node  (  3  )   root  .  right   =   Node  (  12  )   root  .  right  .  left   =   Node  (  9  )   root  .  right  .  right   =   Node  (  21  )   root  .  right  .  right  .  left   =   Node  (  19  )   root  .  right  .  right  .  right   =   Node  (  25  )   print  (  findMaxFork  (  root     k  ))   
C#
   // C# code to find the largest value    // smaller than or equal to k using recursion   using     System  ;   class     Node     {      public     int     data  ;      public     Node     left       right  ;          public     Node  (  int     val  )     {      data     =     val  ;      left     =     null  ;      right     =     null  ;      }   }   class     GfG     {          // function to find max value less than k      static     int     FindMaxFork  (  Node     root       int     k  )     {      int     result     =     -  1  ;          // Start from root and keep looking for larger       while     (  root     !=     null  )     {      // If root is smaller go to right side      if     (  root  .  data      <=     k  )     {      result     =     root  .  data  ;      root     =     root  .  right  ;      }      // If root is greater go to left side       else     {      root     =     root  .  left  ;      }      }          return     result  ;      }      static     void     Main  ()     {      int     k     =     24  ;      // creating following BST      //      // 5      // /        // 2 12      // /  /        // 1 3 9 21      // /        // 19 25      Node     root     =     new     Node  (  5  );      root  .  left     =     new     Node  (  2  );      root  .  left  .  left     =     new     Node  (  1  );      root  .  left  .  right     =     new     Node  (  3  );      root  .  right     =     new     Node  (  12  );      root  .  right  .  left     =     new     Node  (  9  );      root  .  right  .  right     =     new     Node  (  21  );      root  .  right  .  right  .  left     =     new     Node  (  19  );      root  .  right  .  right  .  right     =     new     Node  (  25  );      Console  .  WriteLine  (  FindMaxFork  (  root       k  ));      }   }   
JavaScript
   // JavaScript code to find the largest value    // smaller than or equal to k using recursion   class     Node     {      constructor  (  val  )     {      this  .  data     =     val  ;      this  .  left     =     null  ;      this  .  right     =     null  ;      }   }   // function to find max value less than k   function     findMaxFork  (  root       k  )     {      let     result     =     -  1  ;          // Start from root and keep looking for larger       while     (  root     !==     null  )     {      // If root is smaller go to right side      if     (  root  .  data      <=     k  )     {      result     =     root  .  data  ;      root     =     root  .  right  ;      }      // If root is greater go to left side       else     {      root     =     root  .  left  ;      }      }          return     result  ;   }   let     k     =     24  ;   // creating following BST   //   // 5   // /     // 2 12   // /  /     // 1 3 9 21   // /     // 19 25   let     root     =     new     Node  (  5  );   root  .  left     =     new     Node  (  2  );   root  .  left  .  left     =     new     Node  (  1  );   root  .  left  .  right     =     new     Node  (  3  );   root  .  right     =     new     Node  (  12  );   root  .  right  .  left     =     new     Node  (  9  );   root  .  right  .  right     =     new     Node  (  21  );   root  .  right  .  right  .  left     =     new     Node  (  19  );   root  .  right  .  right  .  right     =     new     Node  (  25  );   console  .  log  (  findMaxFork  (  root       k  ));   

Kimenet
21 
Kvíz létrehozása

Top Cikkek

Kategória

Érdekes Cikkek