Klonirajte neusmjereni graf

Klonirajte neusmjereni graf
Isprobajte na GfG Practice Klonirajte neusmjereni graf

S obzirom na a  povezani neusmjereni graf  predstavljena popisom susjedstva  AdjList[][]  čvorovi i  m  rubovi pri čemu svaki čvor ima a  posebna oznaka  iz  0 do n-1 a svaki adj[i] predstavlja popis vrhova povezanih s vrhom i.

Stvorite a  klon  grafa gdje svaki čvor u grafu sadrži cijeli broj  val  i niz ( susjedi ) čvorova   koji sadrži čvorove koji su susjedni trenutnom čvoru.

klasa čvor {
val: cijeli broj
susjedi: popis[čvor]
}

Vaš zadatak je klonirati dati graf i vratiti referencu na klonirani graf.

Bilješka: Ako vratite ispravnu kopiju danog grafa, izlaz će biti istinit; inače ako je kopija netočna, ispis će biti netočan.

Primjeri

Ulazni: n = 4 adjList[][] = [[1 2] [0 2] [0 1 3] [2]]
Izlaz: pravi
Obrazloženje:
Klonirajte neusmjereni graf
Budući da je klonirani graf identičan originalu, izlaz će biti istinit.

Ulazni: n = 3 adjList[][] = [[1 2] [0] [0]]
Izlaz: pravi
Obrazloženje:
Budući da je klonirani graf identičan originalu, izlaz će biti istinit.

Sadržaj

Zašto moramo pratiti posjećene/klonirane čvorove?

Moramo pratiti posjećene ili klonirane čvorove kako bismo izbjegli beskonačnu rekurziju i suvišni rad prilikom kloniranja grafa. Budući da grafikoni mogu sadržavati cikluse (gdje čvor može upućivati ​​natrag na prethodno posjećeni čvor) bez praćenja čvorova koje smo već klonirali, funkcija kloniranja bi beskrajno ponovno posjećivala iste čvorove što bi rezultiralo prekoračenjem stoga ili netočnim dupliciranjem.

Kako pratiti posjećene/klonirane čvorove?

HashMap/Map je potreban kako bi se održali svi čvorovi koji su već stvoreni. Pohrana ključeva : Referenca/adresa izvornog čvora Pohrane vrijednosti : Referenca/Adresa kloniranog čvora Napravljena je kopija svih čvorova grafa.

Kako spojiti klonirane čvorove?

Prilikom obilaska susjednih vrhova a čvor u dobiti odgovarajući klon čvor za tebe nazovimo to U sada posjetite sve susjedne čvorove za u i za svakog susjeda pronađite odgovarajući čvor klona (ako nije pronađen, stvorite jedan) i zatim gurnite u susjedni vektor od U čvor. 

Kako provjeriti je li klonirani graf točan?

Izvršite BFS obilazak na izvornom grafu prije kloniranja i zatim ponovo na kloniranom grafu nakon što je kloniranje završeno. Tijekom svakog obilaska ispišite vrijednost svakog čvora zajedno s njegovom adresom (ili referencom). Kako biste provjerili ispravnost kloniranja, usporedite redoslijed čvorova posjećenih u oba obilaska. Ako se vrijednosti čvorova pojavljuju istim redoslijedom, ali se njihove adrese (ili reference) razlikuju, to potvrđuje da je graf uspješno i ispravno kloniran.

Istražite kako klonirati neusmjereni graf uključujući grafove s više povezanih komponenti koristeći BFS ili DFS kako bi se osigurala potpuna dubinska kopija svih čvorova i rubova.

[Pristup 1] Korištenje BFS traversal - O(V+E) vrijeme i O(V) prostor

U BFS pristupu graf se iterativno klonira korištenjem reda čekanja. Počinjemo kloniranjem početnog čvora i stavljanjem u red čekanja. Dok obrađujemo svaki čvor iz reda čekanja posjećujemo njegove susjede. Ako susjed još nije kloniran, stvaramo klon, pohranjujemo ga na kartu i stavljamo u red za kasniju obradu. Zatim dodajemo klon susjeda na popis susjeda klonova trenutnog čvora. Ovaj se proces nastavlja od razine do razine osiguravajući da su svi čvorovi posjećeni redoslijedom u širinu. BFS je posebno koristan za izbjegavanje duboke rekurzije i učinkovito rukovanje velikim ili širokim grafovima.

C++
   #include          #include         #include         #include         using     namespace     std  ;   // Definition for a Node   struct     Node     {      int     val  ;      vector   <  Node  *>     neighbors  ;   };   // Clone the graph    Node  *     cloneGraph  (  Node  *     node  )     {      if     (  !  node  )     return     nullptr  ;      map   <  Node  *       Node  *>     mp  ;      queue   <  Node  *>     q  ;          // Clone the source node      Node  *     clone     =     new     Node  ();      clone  ->  val     =     node  ->  val  ;      mp  [  node  ]     =     clone  ;      q  .  push  (  node  );      while     (  !  q  .  empty  ())     {      Node  *     u     =     q  .  front  ();      q  .  pop  ();      for     (  auto     neighbor     :     u  ->  neighbors  )     {          // Clone neighbor if not already cloned      if     (  mp  .  find  (  neighbor  )     ==     mp  .  end  ())     {      Node  *     neighborClone     =     new     Node  ();      neighborClone  ->  val     =     neighbor  ->  val  ;      mp  [  neighbor  ]     =     neighborClone  ;      q  .  push  (  neighbor  );      }      // Link clone of neighbor to clone of current node      mp  [  u  ]  ->  neighbors  .  push_back  (  mp  [  neighbor  ]);      }      }      return     mp  [  node  ];   }   // Build graph   Node  *     buildGraph  ()     {      Node  *     node1     =     new     Node  ();     node1  ->  val     =     0  ;      Node  *     node2     =     new     Node  ();     node2  ->  val     =     1  ;      Node  *     node3     =     new     Node  ();     node3  ->  val     =     2  ;      Node  *     node4     =     new     Node  ();     node4  ->  val     =     3  ;      node1  ->  neighbors     =     {  node2       node3  };      node2  ->  neighbors     =     {  node1       node3  };      node3  ->  neighbors     =     {  node1       node2       node4  };      node4  ->  neighbors     =     {  node3  };      return     node1  ;   }       // Compare two graphs for structural and value equality   bool     compareGraphs  (  Node  *     node1       Node  *     node2           map   <  Node  *       Node  *>&     visited  )     {      if     (  !  node1     ||     !  node2  )         return     node1     ==     node2  ;          if     (  node1  ->  val     !=     node2  ->  val     ||     node1     ==     node2  )      return     false  ;      visited  [  node1  ]     =     node2  ;      if     (  node1  ->  neighbors  .  size  ()     !=     node2  ->  neighbors  .  size  ())         return     false  ;      for     (  size_t     i     =     0  ;     i      <     node1  ->  neighbors  .  size  ();     ++  i  )     {      Node  *     n1     =     node1  ->  neighbors  [  i  ];      Node  *     n2     =     node2  ->  neighbors  [  i  ];      if     (  visited  .  count  (  n1  ))     {      if     (  visited  [  n1  ]     !=     n2  )         return     false  ;      }     else     {      if     (  !  compareGraphs  (  n1       n2       visited  ))      return     false  ;      }      }      return     true  ;   }   // Driver Code   int     main  ()     {      Node  *     original     =     buildGraph  ();      Node  *     cloned     =     cloneGraph  (  original  );      map   <  Node  *       Node  *>     visited  ;      cout      < <     (  compareGraphs  (  original       cloned       visited  )     ?         'true'     :     'false'  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.util.*  ;   // Definition for a Node   class   Node     {      public     int     val  ;      public     ArrayList   <  Node  >     neighbors  ;      public     Node  ()     {      neighbors     =     new     ArrayList   <>  ();      }      public     Node  (  int     val  )     {      this  .  val     =     val  ;      neighbors     =     new     ArrayList   <>  ();      }   }   public     class   GfG     {      // Clone the graph      public     static     Node     cloneGraph  (  Node     node  )     {      if     (  node     ==     null  )     return     null  ;      Map   <  Node       Node  >     mp     =     new     HashMap   <>  ();      Queue   <  Node  >     q     =     new     LinkedList   <>  ();      // Clone the starting node      Node     clone     =     new     Node  (  node  .  val  );      mp  .  put  (  node       clone  );      q  .  offer  (  node  );      while     (  !  q  .  isEmpty  ())     {      Node     current     =     q  .  poll  ();      for     (  Node     neighbor     :     current  .  neighbors  )     {      // Clone neighbor if it hasn't been cloned yet      if     (  !  mp  .  containsKey  (  neighbor  ))     {      mp  .  put  (  neighbor       new     Node  (  neighbor  .  val  ));      q  .  offer  (  neighbor  );      }      // Add the clone of the neighbor to the current node's clone      mp  .  get  (  current  ).  neighbors  .  add  (  mp  .  get  (  neighbor  ));      }      }      return     mp  .  get  (  node  );      }      // Build graph      public     static     Node     buildGraph  ()     {      Node     node1     =     new     Node  (  0  );      Node     node2     =     new     Node  (  1  );      Node     node3     =     new     Node  (  2  );      Node     node4     =     new     Node  (  3  );      node1  .  neighbors  .  addAll  (  new     ArrayList   <>      (  Arrays  .  asList  (  node2       node3  )));      node2  .  neighbors  .  addAll  (  new     ArrayList   <>      (  Arrays  .  asList  (  node1       node3  )));      node3  .  neighbors  .  addAll  (  new     ArrayList   <>      (  Arrays  .  asList  (  node1       node2       node4  )));      node4  .  neighbors  .  addAll  (  new     ArrayList   <>      (  Arrays  .  asList  (  node3  )));      return     node1  ;      }      // Compare two graphs for structure and value      public     static     boolean     compareGraphs  (  Node     n1       Node     n2           HashMap   <  Node       Node  >     visited  )     {      if     (  n1     ==     null     ||     n2     ==     null  )      return     n1     ==     n2  ;      if     (  n1  .  val     !=     n2  .  val     ||     n1     ==     n2  )      return     false  ;      visited  .  put  (  n1       n2  );      if     (  n1  .  neighbors  .  size  ()     !=     n2  .  neighbors  .  size  ())      return     false  ;      for     (  int     i     =     0  ;     i      <     n1  .  neighbors  .  size  ();     i  ++  )     {      Node     neighbor1     =     n1  .  neighbors  .  get  (  i  );      Node     neighbor2     =     n2  .  neighbors  .  get  (  i  );      if     (  visited  .  containsKey  (  neighbor1  ))     {      if     (  visited  .  get  (  neighbor1  )     !=     neighbor2  )      return     false  ;      }     else     {      if     (  !  compareGraphs  (  neighbor1       neighbor2       visited  ))      return     false  ;      }      }      return     true  ;      }      public     static     void     main  (  String  []     args  )     {      Node     original     =     buildGraph  ();      Node     cloned     =     cloneGraph  (  original  );      boolean     isEqual     =     compareGraphs  (  original       cloned        new     HashMap   <>  ());      System  .  out  .  println  (  isEqual     ?     'true'     :     'false'  );      }   }   
Python
   from   collections   import   deque   # Definition for a Node   class   Node  :   def   __init__  (  self     val  =  0  ):   self  .  val   =   val   self  .  neighbors   =   []   # Clone the graph   def   cloneGraph  (  node  ):   if   not   node  :   return   None   # Map to hold original nodes as keys and their clones as values   mp   =   {}   # Initialize BFS queue   q   =   deque  ([  node  ])   # Clone the starting node   mp  [  node  ]   =   Node  (  node  .  val  )   while   q  :   current   =   q  .  popleft  ()   for   neighbor   in   current  .  neighbors  :   # If neighbor not cloned yet   if   neighbor   not   in   mp  :   mp  [  neighbor  ]   =   Node  (  neighbor  .  val  )   q  .  append  (  neighbor  )   # Link clone of neighbor to the clone of the current node   mp  [  current  ]  .  neighbors  .  append  (  mp  [  neighbor  ])   return   mp  [  node  ]   # Build graph   def   buildGraph  ():   node1   =   Node  (  0  )   node2   =   Node  (  1  )   node3   =   Node  (  2  )   node4   =   Node  (  3  )   node1  .  neighbors   =   [  node2     node3  ]   node2  .  neighbors   =   [  node1     node3  ]   node3  .  neighbors   =   [  node1     node2     node4  ]   node4  .  neighbors   =   [  node3  ]   return   node1   # Compare two graphs structurally and by values   def   compareGraphs  (  n1     n2     visited  ):   if   not   n1   or   not   n2  :   return   n1   ==   n2   if   n1  .  val   !=   n2  .  val   or   n1   is   n2  :   return   False   visited  [  n1  ]   =   n2   if   len  (  n1  .  neighbors  )   !=   len  (  n2  .  neighbors  ):   return   False   for   i   in   range  (  len  (  n1  .  neighbors  )):   neighbor1   =   n1  .  neighbors  [  i  ]   neighbor2   =   n2  .  neighbors  [  i  ]   if   neighbor1   in   visited  :   if   visited  [  neighbor1  ]   !=   neighbor2  :   return   False   else  :   if   not   compareGraphs  (  neighbor1     neighbor2     visited  ):   return   False   return   True   # Driver   if   __name__   ==   '__main__'  :   original   =   buildGraph  ()   cloned   =   cloneGraph  (  original  )   result   =   compareGraphs  (  original     cloned     {})   print  (  'true'   if   result   else   'false'  )   
C#
   using     System  ;   using     System.Collections.Generic  ;   // Definition for a Node   public     class     Node     {      public     int     val  ;      public     List   <  Node  >     neighbors  ;      public     Node  ()     {      neighbors     =     new     List   <  Node  >  ();      }      public     Node  (  int     val  )     {      this  .  val     =     val  ;      neighbors     =     new     List   <  Node  >  ();      }   }   class     GfG     {          // Clone the graph       public     static     Node     CloneGraph  (  Node     node  )     {      if     (  node     ==     null  )         return     null  ;      var     mp     =     new     Dictionary   <  Node       Node  >  ();      var     q     =     new     Queue   <  Node  >  ();      // Clone the starting node      var     clone     =     new     Node  (  node  .  val  );      mp  [  node  ]     =     clone  ;      q  .  Enqueue  (  node  );      while     (  q  .  Count     >     0  )     {      var     current     =     q  .  Dequeue  ();      foreach     (  var     neighbor     in     current  .  neighbors  )     {      // If neighbor not cloned clone it and enqueue      if     (  !  mp  .  ContainsKey  (  neighbor  ))     {      mp  [  neighbor  ]     =     new     Node  (  neighbor  .  val  );      q  .  Enqueue  (  neighbor  );      }      // Add clone of neighbor to clone of current      mp  [  current  ].  neighbors  .  Add  (  mp  [  neighbor  ]);      }      }      return     mp  [  node  ];      }      // Build graph      public     static     Node     BuildGraph  ()     {      var     node1     =     new     Node  (  0  );      var     node2     =     new     Node  (  1  );      var     node3     =     new     Node  (  2  );      var     node4     =     new     Node  (  3  );      node1  .  neighbors  .  AddRange  (  new  []     {     node2       node3     });      node2  .  neighbors  .  AddRange  (  new  []     {     node1       node3     });      node3  .  neighbors  .  AddRange  (  new  []     {     node1       node2       node4     });      node4  .  neighbors  .  AddRange  (  new  []     {     node3     });      return     node1  ;      }      // Compare two graphs for structure and value      public     static     bool     CompareGraphs  (  Node     n1       Node     n2       Dictionary   <  Node       Node  >     visited  )     {      if     (  n1     ==     null     ||     n2     ==     null  )         return     n1     ==     n2  ;          if     (  n1  .  val     !=     n2  .  val     ||     ReferenceEquals  (  n1       n2  ))         return     false  ;      visited  [  n1  ]     =     n2  ;      if     (  n1  .  neighbors  .  Count     !=     n2  .  neighbors  .  Count  )         return     false  ;      for     (  int     i     =     0  ;     i      <     n1  .  neighbors  .  Count  ;     i  ++  )     {      var     neighbor1     =     n1  .  neighbors  [  i  ];      var     neighbor2     =     n2  .  neighbors  [  i  ];      if     (  visited  .  ContainsKey  (  neighbor1  ))     {      if     (  !  ReferenceEquals  (  visited  [  neighbor1  ]     neighbor2  ))         return     false  ;      }     else     {      if     (  !  CompareGraphs  (  neighbor1       neighbor2       visited  ))      return     false  ;      }      }      return     true  ;      }      public     static     void     Main  ()     {      var     original     =     BuildGraph  ();      var     cloned     =     CloneGraph  (  original  );      var     visited     =     new     Dictionary   <  Node       Node  >  ();      Console  .  WriteLine  (  CompareGraphs  (  original       cloned       visited  )         ?     'true'     :     'false'  );      }   }   
JavaScript
   // Definition for a Node   class     Node     {      constructor  (  val     =     0  )     {      this  .  val     =     val  ;      this  .  neighbors     =     [];      }   }   // Clone the graph   function     cloneGraph  (  node  )     {      if     (  !  node  )     return     null  ;      const     mp     =     new     Map  ();      const     q     =     [  node  ];      // Clone the initial node      mp  .  set  (  node       new     Node  (  node  .  val  ));      while     (  q  .  length     >     0  )     {      const     current     =     q  .  shift  ();      for     (  const     neighbor     of     current  .  neighbors  )     {      if     (  !  mp  .  has  (  neighbor  ))     {      mp  .  set  (  neighbor       new     Node  (  neighbor  .  val  ));      q  .  push  (  neighbor  );      }      // Link clone of neighbor to clone of current      mp  .  get  (  current  ).  neighbors  .  push  (  mp  .  get  (  neighbor  ));      }      }      return     mp  .  get  (  node  );   }   // Build graph   function     buildGraph  ()     {      const     node1     =     new     Node  (  0  );      const     node2     =     new     Node  (  1  );      const     node3     =     new     Node  (  2  );      const     node4     =     new     Node  (  3  );      node1  .  neighbors     =     [  node2       node3  ];      node2  .  neighbors     =     [  node1       node3  ];      node3  .  neighbors     =     [  node1       node2       node4  ];      node4  .  neighbors     =     [  node3  ];      return     node1  ;   }   // Compare two graphs structurally and by value   function     compareGraphs  (  n1       n2       visited     =     new     Map  ())     {      if     (  !  n1     ||     !  n2  )         return     n1     ===     n2  ;          if     (  n1  .  val     !==     n2  .  val     ||     n1     ===     n2  )         return     false  ;      visited  .  set  (  n1       n2  );      if     (  n1  .  neighbors  .  length     !==     n2  .  neighbors  .  length  )         return     false  ;      for     (  let     i     =     0  ;     i      <     n1  .  neighbors  .  length  ;     i  ++  )     {      const     neighbor1     =     n1  .  neighbors  [  i  ];      const     neighbor2     =     n2  .  neighbors  [  i  ];      if     (  visited  .  has  (  neighbor1  ))     {      if     (  visited  .  get  (  neighbor1  )     !==     neighbor2  )         return     false  ;          }     else     {      if     (  !  compareGraphs  (  neighbor1       neighbor2       visited  ))      return     false  ;          }      }      return     true  ;   }   // Driver   const     original     =     buildGraph  ();   const     cloned     =     cloneGraph  (  original  );   const     result     =     compareGraphs  (  original       cloned  );   console  .  log  (  result     ?     'true'     :     'false'  );   

Izlaz
true  

[Pristup 2] Korištenje DFS traversal - O(V+E) vrijeme i O(V) prostor

U DFS pristupu graf se klonira pomoću rekurzije. Počinjemo od zadanog čvora i istražujemo što je dalje moguće duž svake grane prije povratka. Karta (ili rječnik) se koristi za praćenje već kloniranih čvorova kako bi se izbjegla obrada istog čvora više puta i za rukovanje ciklusima. Kada prvi put naiđemo na čvor, stvaramo njegov klon i pohranjujemo ga na kartu. Zatim za svakog susjeda tog čvora rekurzivno kloniramo i dodajemo kloniranog susjeda klonu trenutnog čvora. Ovo osigurava da su svi čvorovi dubinski posjećeni prije povratka i da je struktura grafa vjerno kopirana.

C++
   #include          #include         #include         #include         using     namespace     std  ;   // Definition for a Node   struct     Node     {      int     val  ;      vector   <  Node  *>     neighbors  ;   };   // Map to hold original node to its copy   unordered_map   <  Node  *       Node  *>     copies  ;   // Function to clone the graph    Node  *     cloneGraph  (  Node  *     node  )     {          // If the node is NULL return NULL      if     (  !  node  )     return     NULL  ;      // If node is not yet cloned clone it      if     (  copies  .  find  (  node  )     ==     copies  .  end  ())     {      Node  *     clone     =     new     Node  ();      clone  ->  val     =     node  ->  val  ;      copies  [  node  ]     =     clone  ;      // Recursively clone neighbors      for     (  Node  *     neighbor     :     node  ->  neighbors  )     {      clone  ->  neighbors  .  push_back  (  cloneGraph  (  neighbor  ));      }      }      // Return the clone      return     copies  [  node  ];   }   // Build graph   Node  *     buildGraph  ()     {      Node  *     node1     =     new     Node  ();     node1  ->  val     =     0  ;      Node  *     node2     =     new     Node  ();     node2  ->  val     =     1  ;      Node  *     node3     =     new     Node  ();     node3  ->  val     =     2  ;      Node  *     node4     =     new     Node  ();     node4  ->  val     =     3  ;      node1  ->  neighbors     =     {  node2       node3  };      node2  ->  neighbors     =     {  node1       node3  };      node3  ->  neighbors     =     {  node1    node2       node4  };      node4  ->  neighbors     =     {  node3  };      return     node1  ;   }   // Compare two graphs for structural and value equality   bool     compareGraphs  (  Node  *     node1       Node  *     node2       map   <  Node  *       Node  *>&     visited  )     {      if     (  !  node1     ||     !  node2  )         return     node1     ==     node2  ;      if     (  node1  ->  val     !=     node2  ->  val     ||     node1     ==     node2  )      return     false  ;      visited  [  node1  ]     =     node2  ;      if     (  node1  ->  neighbors  .  size  ()     !=     node2  ->  neighbors  .  size  ())         return     false  ;      for     (  size_t     i     =     0  ;     i      <     node1  ->  neighbors  .  size  ();     ++  i  )     {      Node  *     n1     =     node1  ->  neighbors  [  i  ];      Node  *     n2     =     node2  ->  neighbors  [  i  ];      if     (  visited  .  count  (  n1  ))     {      if     (  visited  [  n1  ]     !=     n2  )         return     false  ;      }     else     {      if     (  !  compareGraphs  (  n1       n2       visited  ))      return     false  ;      }      }      return     true  ;   }   // Driver Code   int     main  ()     {      Node  *     original     =     buildGraph  ();      // Clone the graph      Node  *     cloned     =     cloneGraph  (  original  );      // Compare original and cloned graph      map   <  Node  *       Node  *>     visited  ;      cout      < <     (  compareGraphs  (  original       cloned       visited  )     ?         'true'     :     'false'  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.util.*  ;   // Definition for a Node   class   Node     {      int     val  ;      ArrayList   <  Node  >     neighbors  ;      Node  ()     {      neighbors     =     new     ArrayList   <>  ();      }      Node  (  int     val  )     {      this  .  val     =     val  ;      neighbors     =     new     ArrayList   <>  ();      }   }   public     class   GfG     {      // Map to hold original node to its copy      static     HashMap   <  Node       Node  >     copies     =     new     HashMap   <>  ();      // Function to clone the graph using DFS      public     static     Node     cloneGraph  (  Node     node  )     {      // If the node is NULL return NULL      if     (  node     ==     null  )     return     null  ;      // If node is not yet cloned clone it      if     (  !  copies  .  containsKey  (  node  ))     {      Node     clone     =     new     Node  (  node  .  val  );      copies  .  put  (  node       clone  );      // Recursively clone neighbors      for     (  Node     neighbor     :     node  .  neighbors  )     {      clone  .  neighbors  .  add  (  cloneGraph  (  neighbor  ));      }      }      // Return the clone      return     copies  .  get  (  node  );      }      // Build graph      public     static     Node     buildGraph  ()     {      Node     node1     =     new     Node  (  0  );      Node     node2     =     new     Node  (  1  );      Node     node3     =     new     Node  (  2  );      Node     node4     =     new     Node  (  3  );      node1  .  neighbors  .  addAll  (  Arrays  .  asList  (  node2       node3  ));      node2  .  neighbors  .  addAll  (  Arrays  .  asList  (  node1       node3  ));      node3  .  neighbors  .  addAll  (  Arrays  .  asList  (  node1    node2       node4  ));      node4  .  neighbors  .  addAll  (  Arrays  .  asList  (  node3  ));      return     node1  ;      }      // Compare two graphs for structural and value equality      public     static     boolean     compareGraphs  (  Node     node1       Node     node2           HashMap   <  Node       Node  >     visited  )     {      if     (  node1     ==     null     ||     node2     ==     null  )      return     node1     ==     node2  ;      if     (  node1  .  val     !=     node2  .  val     ||     node1     ==     node2  )      return     false  ;      visited  .  put  (  node1       node2  );      if     (  node1  .  neighbors  .  size  ()     !=     node2  .  neighbors  .  size  ())      return     false  ;      for     (  int     i     =     0  ;     i      <     node1  .  neighbors  .  size  ();     i  ++  )     {      Node     n1     =     node1  .  neighbors  .  get  (  i  );      Node     n2     =     node2  .  neighbors  .  get  (  i  );      if     (  visited  .  containsKey  (  n1  ))     {      if     (  visited  .  get  (  n1  )     !=     n2  )      return     false  ;      }     else     {      if     (  !  compareGraphs  (  n1       n2       visited  ))      return     false  ;      }      }      return     true  ;      }      // Driver Code      public     static     void     main  (  String  []     args  )     {      Node     original     =     buildGraph  ();      // Clone the graph      Node     cloned     =     cloneGraph  (  original  );      // Compare original and cloned graph      boolean     result     =     compareGraphs  (  original       cloned       new     HashMap   <>  ());      System  .  out  .  println  (  result     ?     'true'     :     'false'  );      }   }   
Python
   # Definition for a Node   class   Node  :   def   __init__  (  self     val  =  0     neighbors  =  None  ):   self  .  val   =   val   self  .  neighbors   =   neighbors   if   neighbors   is   not   None   else   []   # Map to hold original node to its copy   copies   =   {}   # Function to clone the graph    def   cloneGraph  (  node  ):   # If the node is None return None   if   not   node  :   return   None   # If node is not yet cloned clone it   if   node   not   in   copies  :   # Create a clone of the node   clone   =   Node  (  node  .  val  )   copies  [  node  ]   =   clone   # Recursively clone neighbors   for   neighbor   in   node  .  neighbors  :   clone  .  neighbors  .  append  (  cloneGraph  (  neighbor  ))   # Return the clone   return   copies  [  node  ]   def   buildGraph  ():   node1   =   Node  (  0  )   node2   =   Node  (  1  )   node3   =   Node  (  2  )   node4   =   Node  (  3  )   node1  .  neighbors   =   [  node2     node3  ]   node2  .  neighbors   =   [  node1     node3  ]   node3  .  neighbors   =   [  node1     node2     node4  ]   node4  .  neighbors   =   [  node3  ]   return   node1   # Compare two graphs for structural and value equality   def   compareGraphs  (  node1     node2     visited  ):   if   not   node1   or   not   node2  :   return   node1   ==   node2   if   node1  .  val   !=   node2  .  val   or   node1   is   node2  :   return   False   visited  [  node1  ]   =   node2   if   len  (  node1  .  neighbors  )   !=   len  (  node2  .  neighbors  ):   return   False   for   i   in   range  (  len  (  node1  .  neighbors  )):   n1   =   node1  .  neighbors  [  i  ]   n2   =   node2  .  neighbors  [  i  ]   if   n1   in   visited  :   if   visited  [  n1  ]   !=   n2  :   return   False   else  :   if   not   compareGraphs  (  n1     n2     visited  ):   return   False   return   True   # Driver Code   if   __name__   ==   '__main__'  :   original   =   buildGraph  ()   # Clone the graph using DFS   cloned   =   cloneGraph  (  original  )   # Compare original and cloned graph   visited   =   {}   print  (  'true'   if   compareGraphs  (  original     cloned     visited  )   else   'false'  )   
C#
   using     System  ;   using     System.Collections.Generic  ;   public     class     Node     {      public     int     val  ;      public     List   <  Node  >     neighbors  ;      public     Node  ()     {      val     =     0  ;      neighbors     =     new     List   <  Node  >  ();      }      public     Node  (  int     _val  )     {      val     =     _val  ;      neighbors     =     new     List   <  Node  >  ();      }   }   class     GfG     {      // Dictionary to hold original node to its copy      static     Dictionary   <  Node       Node  >     copies     =     new     Dictionary   <  Node       Node  >  ();      // Function to clone the graph using DFS      public     static     Node     CloneGraph  (  Node     node  )     {      // If the node is NULL return NULL      if     (  node     ==     null  )     return     null  ;      // If node is not yet cloned clone it      if     (  !  copies  .  ContainsKey  (  node  ))     {      Node     clone     =     new     Node  (  node  .  val  );      copies  [  node  ]     =     clone  ;      // Recursively clone neighbors      foreach     (  Node     neighbor     in     node  .  neighbors  )     {      clone  .  neighbors  .  Add  (  CloneGraph  (  neighbor  ));      }      }      // Return the clone      return     copies  [  node  ];      }      // Build graph      public     static     Node     BuildGraph  ()     {      Node     node1     =     new     Node  (  0  );      Node     node2     =     new     Node  (  1  );      Node     node3     =     new     Node  (  2  );      Node     node4     =     new     Node  (  3  );      node1  .  neighbors  .  Add  (  node2  );      node1  .  neighbors  .  Add  (  node3  );      node2  .  neighbors  .  Add  (  node1  );      node2  .  neighbors  .  Add  (  node3  );      node3  .  neighbors  .  Add  (  node1  );      node3  .  neighbors  .  Add  (  node2  );      node3  .  neighbors  .  Add  (  node4  );          node4  .  neighbors  .  Add  (  node3  );      return     node1  ;      }      // Compare two graphs for structural and value equality      public     static     bool     CompareGraphs  (  Node     node1       Node     node2           Dictionary   <  Node       Node  >     visited  )     {      if     (  node1     ==     null     ||     node2     ==     null  )      return     node1     ==     node2  ;      if     (  node1  .  val     !=     node2  .  val     ||     node1     ==     node2  )      return     false  ;      visited  [  node1  ]     =     node2  ;      if     (  node1  .  neighbors  .  Count     !=     node2  .  neighbors  .  Count  )      return     false  ;      for     (  int     i     =     0  ;     i      <     node1  .  neighbors  .  Count  ;     i  ++  )     {      Node     n1     =     node1  .  neighbors  [  i  ];      Node     n2     =     node2  .  neighbors  [  i  ];      if     (  visited  .  ContainsKey  (  n1  ))     {      if     (  visited  [  n1  ]     !=     n2  )      return     false  ;      }     else     {      if     (  !  CompareGraphs  (  n1       n2       visited  ))      return     false  ;      }      }      return     true  ;      }      // Driver Code      public     static     void     Main  ()     {      Node     original     =     BuildGraph  ();      // Clone the graph using DFS      Node     cloned     =     CloneGraph  (  original  );      // Compare original and cloned graph      bool     isEqual     =     CompareGraphs  (  original       cloned       new      Dictionary   <  Node       Node  >  ());      Console  .  WriteLine  (  isEqual     ?     'true'     :     'false'  );      }   }   
JavaScript
   // Definition for a Node   class     Node     {      constructor  (  val     =     0  )     {      this  .  val     =     val  ;      this  .  neighbors     =     [];      }   }   // Map to hold original node to its copy   const     copies     =     new     Map  ();   // Function to clone the graph using DFS   function     cloneGraph  (  node  )     {      // If the node is NULL return NULL      if     (  node     ===     null  )     return     null  ;      // If node is not yet cloned clone it      if     (  !  copies  .  has  (  node  ))     {      const     clone     =     new     Node  (  node  .  val  );      copies  .  set  (  node       clone  );      // Recursively clone neighbors      for     (  let     neighbor     of     node  .  neighbors  )     {      clone  .  neighbors  .  push  (  cloneGraph  (  neighbor  ));      }      }      // Return the clone      return     copies  .  get  (  node  );   }   // Build graph   function     buildGraph  ()     {      const     node1     =     new     Node  (  0  );      const     node2     =     new     Node  (  1  );      const     node3     =     new     Node  (  2  );      const     node4     =     new     Node  (  3  );      node1  .  neighbors  .  push  (  node2       node3  );      node2  .  neighbors  .  push  (  node1       node3  );      node3  .  neighbors  .  push  (  node1       node2       node4  );      node4  .  neighbors  .  push  (  node3  );      return     node1  ;   }   // Compare two graphs for structural and value equality   function     compareGraphs  (  node1       node2       visited     =     new     Map  ())     {      if     (  !  node1     ||     !  node2  )      return     node1     ===     node2  ;      if     (  node1  .  val     !==     node2  .  val     ||     node1     ===     node2  )      return     false  ;      visited  .  set  (  node1       node2  );      if     (  node1  .  neighbors  .  length     !==     node2  .  neighbors  .  length  )      return     false  ;      for     (  let     i     =     0  ;     i      <     node1  .  neighbors  .  length  ;     i  ++  )     {      const     n1     =     node1  .  neighbors  [  i  ];      const     n2     =     node2  .  neighbors  [  i  ];      if     (  visited  .  has  (  n1  ))     {      if     (  visited  .  get  (  n1  )     !==     n2  )      return     false  ;      }     else     {      if     (  !  compareGraphs  (  n1       n2       visited  ))      return     false  ;      }      }      return     true  ;   }   // Driver Code   const     original     =     buildGraph  ();   // Clone the graph using DFS   const     cloned     =     cloneGraph  (  original  );   // Compare original and cloned graph   console  .  log  (  compareGraphs  (  original       cloned  )     ?     'true'     :     'false'  );   

Izlaz
true