Etsi yksilölliset parit siten, että jokainen elementti on pienempi tai yhtä suuri kuin N

Etsi yksilölliset parit siten, että jokainen elementti on pienempi tai yhtä suuri kuin N

Annettu kokonaisluku N etsi ja näytä parien määrä, joka täyttää seuraavat ehdot:

  • Näiden kahden luvun välisen etäisyyden neliö on yhtä suuri kuin LCM näistä kahdesta numerosta.
  • The GCD näistä kahdesta luvusta on yhtä suuri kuin kahden peräkkäisen kokonaisluvun tulo.
  • Parin molempien lukujen tulee olla pienempiä tai yhtä suuria kuin N.

HUOMAA: Vain ne parit tulisi näyttää, jotka noudattavat molempia yllä olevia ehtoja samanaikaisesti, ja näiden lukujen on oltava pienempiä tai yhtä suuria kuin N.

Esimerkkejä:   

  Input:   10   Output:   No. of pairs = 1 Pair no. 1 --> (2 4)   Input:   500   Output:   No. of pairs = 7 Pair no. 1 --> (2 4) Pair no. 2 --> (12 18) Pair no. 3 --> (36 48) Pair no. 4 --> (80 100) Pair no. 5 --> (150 180) Pair no. 6 --> (252 294) Pair no. 7 --> (392 448) 

Selitys:
Alla olevat taulukot antavat selkeän kuvan siitä, mitä löytyy:  

Etsi yksilölliset parit siten, että jokainen elementti on pienempi tai yhtä suuri kuin N

Yllä olevissa taulukoissa on GCD, joka on muodostettu kahden peräkkäisen luvun tulosta ja sitä vastaavista kerrannaisista, joissa kutakin arvoa vastaava ERIKOISPARI on olemassa. Vihreät merkinnät kullakin rivillä muodostavat yksilöllisen parin vastaavalle GCD:lle.
Huomautus: Yllä olevissa taulukoissa  

  1. Ensimmäiselle merkinnälle GCD=2 1. ja 2:n 2. kerrannainen muodostavat ainutlaatuisen parin (2 4)
  2. Vastaavasti 2. merkinnälle GCD=6 2. ja 6:n 3. kerrannainen muodostavat ainutlaatuisen parin (12 18)
  3. Samoin siirryttäessä Z:nnelle merkinnälle, eli GCD = Z*(Z+1), on selvää, että yksilöllinen pari käsittää Z:nnen ja (Z+1):nnen kerrannaisen GCD = Z*(Z+1). Nyt GCD:n Z:s kerrannainen on Z * (Z*(Z+1)) ja GCD:n (Z+1):s kerrannainen on (Z + 1) * (Z*(Z+1)).
  4. Ja koska raja on N, yksilöllisen parin toisen luvun on oltava pienempi tai yhtä suuri kuin N. Joten (Z + 1) * (Z*(Z+1)) <= N. Simplifying it further the desired relation is derived Z 3 + (2*Z 2 ) + Z <=N

Tämä muodostaa kuvion ja matemaattisesta laskelmasta johdetaan, että tietylle N:lle tällaisten yksilöllisten parien kokonaismäärä (kuten Z) noudattaa alla esitettyä matemaattista suhdetta: 

Z 3  + (2*Z 2 ) + Z  <= N 


Alla on vaadittu toteutus:  

C
   // C program for finding the required pairs   #include         #include         // Finding the number of unique pairs   int     No_Of_Pairs  (  int     N  )   {      int     i     =     1  ;      // Using the derived formula      while     ((  i     *     i     *     i  )     +     (  2     *     i     *     i  )     +     i      <=     N  )      i  ++  ;      return     (  i     -     1  );   }   // Printing the unique pairs   void     print_pairs  (  int     pairs  )   {      int     i     =     1       mul  ;      for     (  i     =     1  ;     i      <=     pairs  ;     i  ++  )     {      mul     =     i     *     (  i     +     1  );      printf  (  'Pair no. %d --> (%d %d)  n  '        i       (  mul     *     i  )     mul     *     (  i     +     1  ));      }   }   // Driver program to test above functions   int     main  ()   {      int     N     =     500       pairs       mul       i     =     1  ;      pairs     =     No_Of_Pairs  (  N  );      printf  (  'No. of pairs = %d   n  '       pairs  );      print_pairs  (  pairs  );      return     0  ;   }   
Java
   // Java program for finding   // the required pairs   import     java.io.*  ;   class   GFG      {          // Finding the number      // of unique pairs      static     int     No_Of_Pairs  (  int     N  )      {      int     i     =     1  ;          // Using the derived formula      while     ((  i     *     i     *     i  )     +         (  2     *     i     *     i  )     +     i      <=     N  )      i  ++  ;          return     (  i     -     1  );      }          // Printing the unique pairs      static     void     print_pairs  (  int     pairs  )      {      int     i     =     1       mul  ;      for     (  i     =     1  ;     i      <=     pairs  ;     i  ++  )      {      mul     =     i     *     (  i     +     1  );      System  .  out  .  println  (  'Pair no. '     +     i     +     ' --> ('     +         (  mul     *     i  )     +     ' '     +         mul     *     (  i     +     1  )     +     ')'  );         }      }          // Driver code      public     static     void     main     (  String  []     args  )      {      int     N     =     500       pairs       mul       i     =     1  ;      pairs     =     No_Of_Pairs  (  N  );          System  .  out  .  println  (  'No. of pairs = '     +     pairs  );      print_pairs  (  pairs  );      }   }   // This code is contributed by Mahadev.   
Python3
   # Python3 program for finding the required pairs   # Finding the number of unique pairs   def   No_Of_Pairs  (  N  ):   i   =   1  ;   # Using the derived formula   while   ((  i   *   i   *   i  )   +   (  2   *   i   *   i  )   +   i    <=   N  ):   i   +=   1  ;   return   (  i   -   1  );   # Printing the unique pairs   def   print_pairs  (  pairs  ):   i   =   1  ;   mul   =   0  ;   for   i   in   range  (  1     pairs   +   1  ):   mul   =   i   *   (  i   +   1  );   print  (  'Pair no.'      i     ' --> ('     (  mul   *   i  )   ' '     mul   *   (  i   +   1  )   ')'  );   # Driver Code   N   =   500  ;   i   =   1  ;   pairs   =   No_Of_Pairs  (  N  );   print  (  'No. of pairs = '     pairs  );   print_pairs  (  pairs  );   # This code is contributed   # by mits   
C#
   // C# program for finding   // the required pairs   using     System  ;   class     GFG      {       // Finding the number   // of unique pairs   static     int     No_Of_Pairs  (  int     N  )   {      int     i     =     1  ;      // Using the derived formula      while     ((  i     *     i     *     i  )     +         (  2     *     i     *     i  )     +     i      <=     N  )      i  ++  ;      return     (  i     -     1  );   }   // Printing the unique pairs   static     void     print_pairs  (  int     pairs  )   {      int     i     =     1       mul  ;      for     (  i     =     1  ;     i      <=     pairs  ;     i  ++  )      {      mul     =     i     *     (  i     +     1  );      Console  .  WriteLine  (  'Pair no. '     +     i     +     ' --> ('     +         (  mul     *     i  )     +     ' '     +         mul     *     (  i     +     1  )     +     ')'  );         }   }   // Driver code   static     void     Main  ()   {      int     N     =     500       pairs  ;      pairs     =     No_Of_Pairs  (  N  );      Console  .  WriteLine  (  'No. of pairs = '     +         pairs  );      print_pairs  (  pairs  );   }   }   // This code is contributed by mits   
PHP
      // PHP program for finding    // the required pairs   // Finding the number    // of unique pairs   function   No_Of_Pairs  (  $N  )   {   $i   =   1  ;   // Using the    // derived formula   while   ((  $i   *   $i   *   $i  )   +   (  2   *   $i   *   $i  )   +   $i    <=   $N  )   $i  ++  ;   return   (  $i   -   1  );   }   // Printing the unique pairs   function   print_pairs  (  $pairs  )   {   $i   =   1  ;   $mul  ;   for   (  $i   =   1  ;   $i    <=   $pairs  ;   $i  ++  )   {   $mul   =   $i   *   (  $i   +   1  );   echo   'Pair no.'      $i     ' --> ('      (  $mul   *   $i  )   ' '     $mul   *   (  $i   +   1  )  ')   n  '  ;   }   }   // Driver Code   $N   =   500  ;   $pairs  ;   $mul  ;   $i   =   1  ;   $pairs   =   No_Of_Pairs  (  $N  );   echo   'No. of pairs = '     $pairs      '   n  '  ;   print_pairs  (  $pairs  );   // This code is contributed   // by Akanksha Rai(Abby_akku)   ?>   
JavaScript
    <  script  >   // Javascript program for finding the    // required pairs   // Finding the number of unique pairs   function     No_Of_Pairs  (  N  )   {      let     i     =     1  ;      // Using the derived formula      while     ((  i     *     i     *     i  )     +      (  2     *     i     *     i  )     +     i      <=     N  )      i  ++  ;      return     (  i     -     1  );   }   // Printing the unique pairs   function     print_pairs  (  pairs  )   {      let     i     =     1       mul  ;      for  (  i     =     1  ;     i      <=     pairs  ;     i  ++  )         {      mul     =     i     *     (  i     +     1  );      document  .  write  (  'Pair no. '     +     i     +         ' --> ('     +     (  mul     *     i  )     +      ' '     +     mul     *     (  i     +     1  )     +         ')  
'
); } } // Driver code let N = 500 pairs mul i = 1 ; pairs = No_Of_Pairs ( N ); document . write ( 'No. of pairs = ' + pairs + '
'
); print_pairs ( pairs ); // This code is contributed by mohit kumar 29 < /script>
C++14
   // C++ code for the above approach:   #include          using     namespace     std  ;   // Finding the number of unique pairs   int     No_Of_Pairs  (  int     N  )   {      int     i     =     1  ;      // Using the derived formula      while     ((  i     *     i     *     i  )     +     (  2     *     i     *     i  )     +     i      <=     N  )      i  ++  ;      return     (  i     -     1  );   }   // Printing the unique pairs   void     print_pairs  (  int     pairs  )   {      int     i     =     1       mul  ;      for     (  i     =     1  ;     i      <=     pairs  ;     i  ++  )     {      mul     =     i     *     (  i     +     1  );      cout      < <     'Pair no. '   < <     i      < <  ' --> ('      < <     (  mul     *     i  )      < <     ' '   < <     mul     *     (  i     +     1  )      < <     ')'      < <  endl  ;;      }   }   // Driver Code   int     main  ()   {      int     N     =     500       pairs       mul       i     =     1  ;      pairs     =     No_Of_Pairs  (  N  );      cout      < <     'No. of pairs = '      < <     pairs      < <     endl  ;      print_pairs  (  pairs  );      return     0  ;   }   

Lähtö:  
No. of pairs = 7 Pair no. 1 --> (2 4) Pair no. 2 --> (12 18) Pair no. 3 --> (36 48) Pair no. 4 --> (80 100) Pair no. 5 --> (150 180) Pair no. 6 --> (252 294) Pair no. 7 --> (392 448) 

 

Aika monimutkaisuus : O(N 1/3 )
Aputila : O(1)