Ubicación óptima del punto para minimizar la distancia total

Ubicación óptima del punto para minimizar la distancia total
Pruébalo en GfG Practice Ubicación óptima del punto para minimizar la distancia total #practiceLinkDiv { mostrar: ninguno !importante; }

Dado un conjunto de puntos como y una línea como ax+by+c = 0. Necesitamos encontrar un punto en una línea dada para la cual la suma de distancias desde un conjunto de puntos dado sea mínima. 

Ejemplo:  

In above figure optimum location of point of x - y - 3 = 0 line is (2 -1) whose total distance with other points is 20.77 which is minimum obtainable total distance. 
Recommended Practice Ubicación óptima del punto para minimizar la distancia total ¡Pruébalo!

Si tomamos un punto en una línea dada a una distancia infinita, entonces el costo total de la distancia será infinito. Ahora, cuando movemos este punto en la línea hacia puntos dados, el costo total de la distancia comienza a disminuir y después de un tiempo comienza a aumentar nuevamente, lo que llega a infinito en el otro extremo infinito de la línea, por lo que la curva del costo de la distancia parece una curva en U y tenemos que encontrar el valor inferior de esta curva en U. 

Como la curva en U no aumenta ni disminuye monótonamente, no podemos usar la búsqueda binaria para encontrar el punto más bajo. Aquí usaremos la búsqueda ternaria para encontrar el punto más bajo. La búsqueda ternaria omite un tercio del espacio de búsqueda en cada iteración. Puede leer más sobre la búsqueda ternaria. aquí

Entonces, la solución procede de la siguiente manera: comenzamos con bajo y alto inicializados como algunos valores más pequeños y más grandes respectivamente, luego comenzamos la iteración en cada iteración, calculamos dos medios mid1 y mid2 que representan 1/3 y 2/3 de posición en el espacio de búsqueda, calculamos la distancia total de todos los puntos con mid1 y mid2 y actualizamos bajo o alto comparando estos costos de distancia. Esta iteración continúa hasta que bajo y alto se vuelven aproximadamente iguales. 

C++
   // C/C++ program to find optimum location and total cost   #include          using     namespace     std  ;   #define sq(x) ((x) * (x))   #define EPS 1e-6   #define N 5   // structure defining a point   struct     point     {      int     x       y  ;      point  ()     {}      point  (  int     x       int     y  )      :     x  (  x  )           y  (  y  )      {      }   };   // structure defining a line of ax + by + c = 0 form   struct     line     {      int     a       b       c  ;      line  (  int     a       int     b       int     c  )      :     a  (  a  )           b  (  b  )           c  (  c  )      {      }   };   // method to get distance of point (x y) from point p   double     dist  (  double     x       double     y       point     p  )   {      return     sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));   }   /* Utility method to compute total distance all points    when choose point on given line has x-coordinate    value as X */   double     compute  (  point     p  []     int     n       line     l       double     X  )   {      double     res     =     0  ;      // calculating Y of chosen point by line equation      double     Y     =     -1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]);      return     res  ;   }   // Utility method to find minimum total distance   double     findOptimumCostUtil  (  point     p  []     int     n       line     l  )   {      double     low     =     -1e6  ;      double     high     =     1e6  ;      // loop until difference between low and high      // become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative x co-ordiantes      // of search space      double     mid1     =     low     +     (  high     -     low  )     /     3  ;      double     mid2     =     high     -     (  high     -     low  )     /     3  ;      //      double     dist1     =     compute  (  p       n       l       mid1  );      double     dist2     =     compute  (  p       n       l       mid2  );      // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;      // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }      // compute optimum distance cost by sending average      // of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );   }   // method to find optimum cost   double     findOptimumCost  (  int     points  [  N  ][  2  ]     line     l  )   {      point     p  [  N  ];      // converting 2D array input to point array      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     point  (  points  [  i  ][  0  ]     points  [  i  ][  1  ]);      return     findOptimumCostUtil  (  p       N       l  );   }   // Driver code to test above method   int     main  ()   {      line     l  (  1       -1       -3  );      int     points  [  N  ][  2  ]     =     {      {     -3       -2     }     {     -1       0     }     {     -1       2     }     {     1       2     }     {     3       4     }      };      cout      < <     findOptimumCost  (  points       l  )      < <     endl  ;      return     0  ;   }   
Java
   // A Java program to find optimum location   // and total cost   class   GFG     {      static     double     sq  (  double     x  )     {     return     ((  x  )     *     (  x  ));     }      static     int     EPS     =     (  int  )(  1e-6  )     +     1  ;      static     int     N     =     5  ;      // structure defining a point      static     class   point     {      int     x       y  ;      point  ()     {}      public     point  (  int     x       int     y  )      {      this  .  x     =     x  ;      this  .  y     =     y  ;      }      };      // structure defining a line of ax + by + c = 0 form      static     class   line     {      int     a       b       c  ;      public     line  (  int     a       int     b       int     c  )      {      this  .  a     =     a  ;      this  .  b     =     b  ;      this  .  c     =     c  ;      }      };      // method to get distance of point (x y) from point p      static     double     dist  (  double     x       double     y       point     p  )      {      return     Math  .  sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));      }      /* Utility method to compute total distance all points    when choose point on given line has x-coordinate    value as X */      static     double     compute  (  point     p  []       int     n       line     l        double     X  )      {      double     res     =     0  ;      // calculating Y of chosen point by line equation      double     Y     =     -  1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]  );      return     res  ;      }      // Utility method to find minimum total distance      static     double     findOptimumCostUtil  (  point     p  []       int     n        line     l  )      {      double     low     =     -  1e6  ;      double     high     =     1e6  ;      // loop until difference between low and high      // become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative x      // co-ordiantes of search space      double     mid1     =     low     +     (  high     -     low  )     /     3  ;      double     mid2     =     high     -     (  high     -     low  )     /     3  ;      double     dist1     =     compute  (  p       n       l       mid1  );      double     dist2     =     compute  (  p       n       l       mid2  );      // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;      // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }      // compute optimum distance cost by sending average      // of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );      }      // method to find optimum cost      static     double     findOptimumCost  (  int     points  [][]       line     l  )      {      point  []     p     =     new     point  [  N  ]  ;      // converting 2D array input to point array      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     new     point  (  points  [  i  ][  0  ]       points  [  i  ][  1  ]  );      return     findOptimumCostUtil  (  p       N       l  );      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      line     l     =     new     line  (  1       -  1       -  3  );      int     points  [][]     =     {     {     -  3       -  2     }      {     -  1       0     }      {     -  1       2     }      {     1       2     }      {     3       4     }     };      System  .  out  .  println  (  findOptimumCost  (  points       l  ));      }   }   // This code is contributed by Rajput-Ji   
Python3
   # A Python3 program to find optimum location   # and total cost   import   math   class   Optimum_distance  :   # Class defining a point   class   Point  :   def   __init__  (  self     x     y  ):   self  .  x   =   x   self  .  y   =   y   # Class defining a line of ax + by + c = 0 form   class   Line  :   def   __init__  (  self     a     b     c  ):   self  .  a   =   a   self  .  b   =   b   self  .  c   =   c   # Method to get distance of point    # (x y) from point p   def   dist  (  self     x     y     p  ):   return   math  .  sqrt  ((  x   -   p  .  x  )   **   2   +   (  y   -   p  .  y  )   **   2  )   # Utility method to compute total distance   # all points when choose point on given   # line has x-coordinate value as X   def   compute  (  self     p     n     l     x  ):   res   =   0   y   =   -  1   *   (  l  .  a  *  x   +   l  .  c  )   /   l  .  b   # Calculating Y of chosen point   # by line equation   for   i   in   range  (  n  ):   res   +=   self  .  dist  (  x     y     p  [  i  ])   return   res   # Utility method to find minimum total distance   def   find_Optimum_cost_untill  (  self     p     n     l  ):   low   =   -  1e6   high   =   1e6   eps   =   1e-6   +   1   # Loop until difference between low   # and high become less than EPS   while  ((  high   -   low  )   >   eps  ):   # mid1 and mid2 are representative x   # co-ordiantes of search space   mid1   =   low   +   (  high   -   low  )   /   3   mid2   =   high   -   (  high   -   low  )   /   3   dist1   =   self  .  compute  (  p     n     l     mid1  )   dist2   =   self  .  compute  (  p     n     l     mid2  )   # If mid2 point gives more total    # distance skip third part   if   (  dist1    <   dist2  ):   high   =   mid2   # If mid1 point gives more total   # distance skip first part   else  :   low   =   mid1   # Compute optimum distance cost by    # sending average of low and high as X   return   self  .  compute  (  p     n     l     (  low   +   high  )   /   2  )   # Method to find optimum cost   def   find_Optimum_cost  (  self     p     l  ):   n   =   len  (  p  )   p_arr   =   [  None  ]   *   n   # Converting 2D array input to point array   for   i   in   range  (  n  ):   p_obj   =   self  .  Point  (  p  [  i  ][  0  ]   p  [  i  ][  1  ])   p_arr  [  i  ]   =   p_obj   return   self  .  find_Optimum_cost_untill  (  p_arr     n     l  )   # Driver Code   if   __name__   ==   '__main__'  :   obj   =   Optimum_distance  ()   l   =   obj  .  Line  (  1     -  1     -  3  )   p   =   [   [   -  3     -  2   ]   [   -  1     0   ]   [   -  1     2   ]   [   1     2   ]   [   3     4   ]   ]   print  (  obj  .  find_Optimum_cost  (  p     l  ))   # This code is contributed by Sulu_mufi   
C#
   // C# program to find optimum location   // and total cost   using     System  ;   class     GFG     {      static     double     sq  (  double     x  )     {     return     ((  x  )     *     (  x  ));     }      static     int     EPS     =     (  int  )(  1e-6  )     +     1  ;      static     int     N     =     5  ;      // structure defining a point      public     class     point     {      public     int     x       y  ;      public     point  ()     {}      public     point  (  int     x       int     y  )      {      this  .  x     =     x  ;      this  .  y     =     y  ;      }      };      // structure defining a line      // of ax + by + c = 0 form      public     class     line     {      public     int     a       b       c  ;      public     line  (  int     a       int     b       int     c  )      {      this  .  a     =     a  ;      this  .  b     =     b  ;      this  .  c     =     c  ;      }      };      // method to get distance of      // point (x y) from point p      static     double     dist  (  double     x       double     y       point     p  )      {      return     Math  .  Sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));      }      /* Utility method to compute total distance    of all points when choose point on    given line has x-coordinate value as X */      static     double     compute  (  point  []     p       int     n       line     l        double     X  )      {      double     res     =     0  ;      // calculating Y of chosen point      // by line equation      double     Y     =     -  1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]);      return     res  ;      }      // Utility method to find minimum total distance      static     double     findOptimumCostUtil  (  point  []     p       int     n        line     l  )      {      double     low     =     -  1  e6  ;      double     high     =     1  e6  ;      // loop until difference between      // low and high become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative      // x co-ordiantes of search space      double     mid1     =     low     +     (  high     -     low  )     /     3  ;      double     mid2     =     high     -     (  high     -     low  )     /     3  ;      double     dist1     =     compute  (  p       n       l       mid1  );      double     dist2     =     compute  (  p       n       l       mid2  );      // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;      // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }      // compute optimum distance cost by      // sending average of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );      }      // method to find optimum cost      static     double     findOptimumCost  (  int  [     ]     points       line     l  )      {      point  []     p     =     new     point  [  N  ];      // converting 2D array input to point array      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     new     point  (  points  [  i       0  ]     points  [  i       1  ]);      return     findOptimumCostUtil  (  p       N       l  );      }      // Driver Code      public     static     void     Main  (  String  []     args  )      {      line     l     =     new     line  (  1       -  1       -  3  );      int  [     ]     points     =     {     {     -  3       -  2     }      {     -  1       0     }      {     -  1       2     }      {     1       2     }      {     3       4     }     };      Console  .  WriteLine  (  findOptimumCost  (  points       l  ));      }   }   // This code is contributed by 29AjayKumar   
JavaScript
    <  script  >   // A JavaScript program to find optimum location   // and total cost   function     sq  (  x  )   {      return     x  *  x  ;   }   let     EPS     =     (  1e-6  )     +     1  ;   let     N     =     5  ;   // structure defining a point   class     point   {      constructor  (  x    y  )      {      this  .  x  =  x  ;      this  .  y  =  y  ;      }   }   // structure defining a line of ax + by + c = 0 form   class     line   {      constructor  (  a    b    c  )      {      this  .  a     =     a  ;      this  .  b     =     b  ;      this  .  c     =     c  ;      }       }   // method to get distance of point (x y) from point p   function     dist  (  x    y    p  )   {      return     Math  .  sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));   }   /* Utility method to compute total distance all points    when choose point on given line has x-coordinate    value as X */   function     compute  (  p    n    l    X  )   {      let     res     =     0  ;          // calculating Y of chosen point by line equation      let     Y     =     -  1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]);          return     res  ;   }   // Utility method to find minimum total distance   function     findOptimumCostUtil  (  p    n    l  )   {      let     low     =     -  1e6  ;      let     high     =     1e6  ;          // loop until difference between low and high      // become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative x      // co-ordiantes of search space      let     mid1     =     low     +     (  high     -     low  )     /     3  ;      let     mid2     =     high     -     (  high     -     low  )     /     3  ;          let     dist1     =     compute  (  p       n       l       mid1  );      let     dist2     =     compute  (  p       n       l       mid2  );          // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;          // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }          // compute optimum distance cost by sending average      // of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );   }   // method to find optimum cost   function     findOptimumCost  (  points    l  )   {      let     p     =     new     Array  (  N  );          // converting 2D array input to point array      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     new     point  (  points  [  i  ][  0  ]     points  [  i  ][  1  ]);          return     findOptimumCostUtil  (  p       N       l  );   }   // Driver Code   let     l     =     new     line  (  1       -  1       -  3  );   let     points  =     [[     -  3       -  2     ]      [     -  1       0     ]      [     -  1       2     ]      [     1       2     ]      [     3       4     ]];   document  .  write  (  findOptimumCost  (  points       l  ));   // This code is contributed by rag2127    <  /script>   

Producción
20.7652 

Complejidad del tiempo: En 2
Espacio Auxiliar: En)


 

Crear cuestionario