La ruta más larga posible en una matriz con obstáculos

La ruta más larga posible en una matriz con obstáculos
Pruébalo en GfG Practice La ruta más larga posible en una matriz con obstáculos

Dada una matriz binaria 2D junto con[][] donde algunas celdas son obstáculos (indicados por 0 ) y el resto son células libres (indicadas por 1 ) su tarea es encontrar la longitud de la ruta más larga posible desde una celda de origen (xs ys) a una celda de destino (xd yd) .

  • Sólo puedes moverte a celdas adyacentes (arriba, abajo, izquierda, derecha).
  • No se permiten movimientos diagonales.
  • Una celda que una vez fue visitada en una ruta no puede volver a visitarse en esa misma ruta.
  • Si es imposible llegar al destino regresar -1 .

Ejemplos:
Aporte: xs = 0 ys = 0 xd = 1 yd = 7
con[][] = [ [1 1 1 1 1 1 1 1 1 1]
[1 1 0 1 1 0 1 1 0 1]
[1 1 1 1 1 1 1 1 1 1] ]
Producción: 24
Explicación:

Aporte: xs = 0 ys = 3 xd = 2 yd = 2
con[][] =[ [1 0 0 1 0]
[0 0 0 1 0]
[0 1 1 0 0] ]
Producción: -1
Explicación:
Podemos ver que es imposible
llegar a la celda (22) desde (03).

Tabla de contenido

[Enfoque] Uso del seguimiento con la matriz visitada

La idea es utilizar Retroceder . Comenzamos desde la celda fuente de la matriz, avanzamos en las cuatro direcciones permitidas y comprobamos recursivamente si conducen a la solución o no. Si se encuentra el destino, actualizamos el valor de la ruta más larga; de lo contrario, si ninguna de las soluciones anteriores funciona, devolvemos falso de nuestra función.

CPP
   #include          #include         #include         #include          using     namespace     std  ;   // Function to find the longest path using backtracking   int     dfs  (  vector   <  vector   <  int  >>     &  mat           vector   <  vector   <  bool  >>     &  visited       int     i           int     j       int     x       int     y  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||         mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ])     {      return     -1  ;         }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          int     maxPath     =     -1  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited           ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -1  )     {      maxPath     =     max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;   }   int     findLongestPath  (  vector   <  vector   <  int  >>     &  mat           int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -1  ;      }          vector   <  vector   <  bool  >>     visited  (  m       vector   <  bool  >  (  n       false  ));      return     dfs  (  mat       visited       xs       ys       xd       yd  );   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -1  )      cout      < <     result      < <     endl  ;      else      cout      < <     -1      < <     endl  ;          return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   GFG     {          // Function to find the longest path using backtracking      public     static     int     dfs  (  int  [][]     mat       boolean  [][]     visited        int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ]  )     {      return     -  1  ;     // Invalid path      }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       visited       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;      }          public     static     int     findLongestPath  (  int  [][]     mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -  1  ;      }          boolean  [][]     visited     =     new     boolean  [  m  ][  n  ]  ;      return     dfs  (  mat       visited       xs       ys       xd       yd  );      }          public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;      int     xd     =     1       yd     =     7  ;          int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      System  .  out  .  println  (  result  );      else      System  .  out  .  println  (  -  1  );      }   }   
Python
   # Function to find the longest path using backtracking   def   dfs  (  mat     visited     i     j     x     y  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # If destination is reached   if   i   ==   x   and   j   ==   y  :   return   0   # If cell is invalid blocked or already visited   if   i    <   0   or   i   >=   m   or   j    <   0   or   j   >=   n   or   mat  [  i  ][  j  ]   ==   0   or   visited  [  i  ][  j  ]:   return   -  1   # Invalid path   # Mark current cell as visited   visited  [  i  ][  j  ]   =   True   maxPath   =   -  1   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   pathLength   =   dfs  (  mat     visited     ni     nj     x     y  )   # If a valid path is found from this direction   if   pathLength   !=   -  1  :   maxPath   =   max  (  maxPath     1   +   pathLength  )   # Backtrack - unmark current cell   visited  [  i  ][  j  ]   =   False   return   maxPath   def   findLongestPath  (  mat     xs     ys     xd     yd  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # Check if source or destination is blocked   if   mat  [  xs  ][  ys  ]   ==   0   or   mat  [  xd  ][  yd  ]   ==   0  :   return   -  1   visited   =   [[  False   for   _   in   range  (  n  )]   for   _   in   range  (  m  )]   return   dfs  (  mat     visited     xs     ys     xd     yd  )   def   main  ():   mat   =   [   [  1     1     1     1     1     1     1     1     1     1  ]   [  1     1     0     1     1     0     1     1     0     1  ]   [  1     1     1     1     1     1     1     1     1     1  ]   ]   xs     ys   =   0     0   xd     yd   =   1     7   result   =   findLongestPath  (  mat     xs     ys     xd     yd  )   if   result   !=   -  1  :   print  (  result  )   else  :   print  (  -  1  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG   {      // Function to find the longest path using backtracking      static     int     dfs  (  int  []     mat       bool  []     visited           int     i       int     j       int     x       int     y  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )      {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i       j  ]     ==     0     ||     visited  [  i       j  ])      {      return     -  1  ;     // Invalid path      }          // Mark current cell as visited      visited  [  i       j  ]     =     true  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )      {      maxPath     =     Math  .  Max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i       j  ]     =     false  ;          return     maxPath  ;      }          static     int     FindLongestPath  (  int  []     mat       int     xs       int     ys       int     xd       int     yd  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // Check if source or destination is blocked      if     (  mat  [  xs       ys  ]     ==     0     ||     mat  [  xd       yd  ]     ==     0  )      {      return     -  1  ;      }          bool  []     visited     =     new     bool  [  m       n  ];      return     dfs  (  mat       visited       xs       ys       xd       yd  );      }          static     void     Main  ()      {      int  []     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     FindLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      Console  .  WriteLine  (  result  );      else      Console  .  WriteLine  (  -  1  );      }   }   
JavaScript
   // Function to find the longest path using backtracking   function     dfs  (  mat       visited       i       j       x       y  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // If destination is reached      if     (  i     ===     x     &&     j     ===     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||         mat  [  i  ][  j  ]     ===     0     ||     visited  [  i  ][  j  ])     {      return     -  1  ;         }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          let     maxPath     =     -  1  ;          // Four possible moves: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       visited           ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !==     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;   }   function     findLongestPath  (  mat       xs       ys       xd       yd  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ===     0     ||     mat  [  xd  ][  yd  ]     ===     0  )     {      return     -  1  ;      }          const     visited     =     Array  (  m  ).  fill  ().  map  (()     =>     Array  (  n  ).  fill  (  false  ));      return     dfs  (  mat       visited       xs       ys       xd       yd  );   }      const     mat     =     [      [  1       1       1       1       1       1       1       1       1       1  ]      [  1       1       0       1       1       0       1       1       0       1  ]      [  1       1       1       1       1       1       1       1       1       1  ]      ];          const     xs     =     0       ys     =     0  ;         const     xd     =     1       yd     =     7  ;             const     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !==     -  1  )      console  .  log  (  result  );      else      console  .  log  (  -  1  );   

Producción
24  

Complejidad del tiempo: O(4^(m*n)) Para cada celda de la matriz m x n, el algoritmo explora hasta cuatro direcciones posibles (arriba, abajo, izquierda, derecha) que conducen a un número exponencial de caminos. En el peor de los casos, explora todos los caminos posibles, lo que da como resultado una complejidad temporal de 4^(m*n).
Espacio Auxiliar: O(m*n) El algoritmo utiliza una matriz visitada m x n para rastrear las celdas visitadas y una pila de recursión que puede crecer hasta una profundidad de m * n en el peor de los casos (por ejemplo, cuando se explora una ruta que cubre todas las celdas). Por tanto, el espacio auxiliar es O(m*n).

[Enfoque optimizado] Sin utilizar espacio adicional

En lugar de mantener una matriz visitada separada, podemos reutilizar la matriz de entrada para marcar las celdas visitadas durante el recorrido. Esto ahorra espacio adicional y aún garantiza que no volvamos a visitar la misma celda en una ruta.

A continuación se muestra el enfoque paso a paso:

  1. Comenzar desde la celda de origen (xs ys) .
  2. En cada paso, explore las cuatro direcciones posibles (derecha abajo, izquierda arriba).
  3. Para cada movimiento válido:
    • Verifique los límites y asegúrese de que la celda tenga valor 1 (celda libre).
    • Marque la celda como visitada configurándola temporalmente en 0 .
    • Recurra a la siguiente celda e incremente la longitud del camino.
  4. Si la celda de destino (xd yd) se alcanza, compare la longitud de la ruta actual con el máximo hasta el momento y actualice la respuesta.
  5. Retroceder: restaurar el valor original de la celda ( 1 ) antes de regresar para permitir que otros caminos lo exploren.
  6. Continúe explorando hasta que se visiten todos los caminos posibles.
  7. Devuelve la longitud máxima de la ruta. Si el destino es inalcanzable regresar -1
C++
   #include          #include         #include         #include          using     namespace     std  ;   // Function to find the longest path using backtracking without extra space   int     dfs  (  vector   <  vector   <  int  >>     &  mat       int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0  )     {      return     -1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          int     maxPath     =     -1  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -1  )     {      maxPath     =     max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;   }   int     findLongestPath  (  vector   <  vector   <  int  >>     &  mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -1  )      cout      < <     result      < <     endl  ;      else      cout      < <     -1      < <     endl  ;          return     0  ;   }   
Java
   public     class   GFG     {          // Function to find the longest path using backtracking without extra space      public     static     int     dfs  (  int  [][]     mat       int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0  )     {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;      }          public     static     int     findLongestPath  (  int  [][]     mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );      }          public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      System  .  out  .  println  (  result  );      else      System  .  out  .  println  (  -  1  );      }   }   
Python
   # Function to find the longest path using backtracking without extra space   def   dfs  (  mat     i     j     x     y  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # If destination is reached   if   i   ==   x   and   j   ==   y  :   return   0   # If cell is invalid or blocked (0 means blocked or visited)   if   i    <   0   or   i   >=   m   or   j    <   0   or   j   >=   n   or   mat  [  i  ][  j  ]   ==   0  :   return   -  1   # Mark current cell as visited by temporarily setting it to 0   mat  [  i  ][  j  ]   =   0   maxPath   =   -  1   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   pathLength   =   dfs  (  mat     ni     nj     x     y  )   # If a valid path is found from this direction   if   pathLength   !=   -  1  :   maxPath   =   max  (  maxPath     1   +   pathLength  )   # Backtrack - restore the cell's original value (1)   mat  [  i  ][  j  ]   =   1   return   maxPath   def   findLongestPath  (  mat     xs     ys     xd     yd  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # Check if source or destination is blocked   if   mat  [  xs  ][  ys  ]   ==   0   or   mat  [  xd  ][  yd  ]   ==   0  :   return   -  1   return   dfs  (  mat     xs     ys     xd     yd  )   def   main  ():   mat   =   [   [  1     1     1     1     1     1     1     1     1     1  ]   [  1     1     0     1     1     0     1     1     0     1  ]   [  1     1     1     1     1     1     1     1     1     1  ]   ]   xs     ys   =   0     0   xd     yd   =   1     7   result   =   findLongestPath  (  mat     xs     ys     xd     yd  )   if   result   !=   -  1  :   print  (  result  )   else  :   print  (  -  1  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG   {      // Function to find the longest path using backtracking without extra space      static     int     dfs  (  int  []     mat       int     i       int     j       int     x       int     y  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )      {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i       j  ]     ==     0  )      {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i       j  ]     =     0  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )      {      maxPath     =     Math  .  Max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i       j  ]     =     1  ;          return     maxPath  ;      }          static     int     FindLongestPath  (  int  []     mat       int     xs       int     ys       int     xd       int     yd  )      {      // Check if source or destination is blocked      if     (  mat  [  xs       ys  ]     ==     0     ||     mat  [  xd       yd  ]     ==     0  )      {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );      }          static     void     Main  ()      {      int  []     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     FindLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      Console  .  WriteLine  (  result  );      else      Console  .  WriteLine  (  -  1  );      }   }   
JavaScript
   // Function to find the longest path using backtracking without extra space   function     dfs  (  mat       i       j       x       y  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // If destination is reached      if     (  i     ===     x     &&     j     ===     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ===     0  )     {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          let     maxPath     =     -  1  ;          // Four possible moves: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !==     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;   }   function     findLongestPath  (  mat       xs       ys       xd       yd  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ===     0     ||     mat  [  xd  ][  yd  ]     ===     0  )     {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );   }      const     mat     =     [      [  1       1       1       1       1       1       1       1       1       1  ]      [  1       1       0       1       1       0       1       1       0       1  ]      [  1       1       1       1       1       1       1       1       1       1  ]      ];          const     xs     =     0       ys     =     0  ;         const     xd     =     1       yd     =     7  ;             const     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !==     -  1  )      console  .  log  (  result  );      else      console  .  log  (  -  1  );   

Producción
24  

Complejidad del tiempo: O(4^(m*n))El algoritmo aún explora hasta cuatro direcciones por celda en la matriz m x n, lo que da como resultado un número exponencial de rutas. La modificación in situ no afecta la cantidad de rutas exploradas, por lo que la complejidad del tiempo sigue siendo 4^(m*n).
Espacio Auxiliar: O(m*n) Si bien la matriz visitada se elimina modificando la matriz de entrada en el lugar, la pila de recursión aún requiere espacio O(m*n) ya que la profundidad máxima de recursión puede ser m * n en el peor de los casos (por ejemplo, una ruta que visita todas las celdas en una cuadrícula con principalmente 1).