Implementación de cifrado afín

Implementación de cifrado afín

El cifrado afín es un tipo de cifrado de sustitución monoalfabético en el que cada letra de un alfabeto se asigna a su equivalente numérico cifrado mediante una función matemática simple y se convierte nuevamente en una letra. La fórmula utilizada significa que cada letra se cifra en otra letra y viceversa, lo que significa que el cifrado es esencialmente un cifrado de sustitución estándar con una regla que rige qué letra va a cuál. 
Todo el proceso se basa en el módulo de trabajo m (la longitud del alfabeto utilizado). En el cifrado afín, las letras de un alfabeto de tamaño m se asignan primero a los números enteros en el rango 0...m-1. 

La 'clave' para el cifrado Affine consta de 2 números que los llamaremos a y b. La siguiente discusión supone el uso de un alfabeto de 26 caracteres (m = 26). a debe elegirse para que sea relativamente primo con m (es decir, a no debe tener factores en común con m). 

valores de cifrado afines

Cifrado

Utiliza aritmética modular para transformar el número entero al que corresponde cada letra de texto plano en otro número entero que corresponde a una letra de texto cifrado. La función de cifrado para una sola letra es  

 E ( x ) = ( a x + b ) mod m modulus m: size of the alphabet a and b: key of the cipher. a must be chosen such that a and m are coprime. 

Descifrado

Al descifrar el texto cifrado debemos realizar las funciones opuestas (o inversas) en el texto cifrado para recuperar el texto sin formato. Una vez más, el primer paso es convertir cada una de las letras del texto cifrado en sus valores enteros. La función de descifrado es  

D ( x ) = a^-1 ( x - b ) mod m a^-1 : modular multiplicative inverse of a modulo m. i.e. it satisfies the equation 1 = a a^-1 mod m . 

Para encontrar un inverso multiplicativo  

Necesitamos encontrar un número x tal que: 
Si encontramos el número x tal que la ecuación sea verdadera, entonces x es el inverso de a y lo llamamos a^-1. La forma más sencilla de resolver esta ecuación es buscar cada uno de los números del 1 al 25 y ver cuál satisface la ecuación. 

[gxd] = gcd(am); % we can ignore g and d we dont need them x = mod(xm);  

Si ahora multiplica x y a y reduce el resultado (mod 26), obtendrá la respuesta 1. Recuerde que esta es solo la definición de una inversa, es decir, si a*x = 1 (mod 26), entonces x es una inversa de a (y a es una inversa de x)

Ejemplo: 

cifrado afín

Implementación:

C++
   //CPP program to illustrate Affine Cipher   #include       using     namespace     std  ;   //Key values of a and b   const     int     a     =     17  ;   const     int     b     =     20  ;   string     encryptMessage  (  string     msg  )   {      ///Cipher Text initially empty      string     cipher     =     ''  ;         for     (  int     i     =     0  ;     i      <     msg  .  length  ();     i  ++  )      {      // Avoid space to be encrypted       if  (  msg  [  i  ]  !=  ' '  )         /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      cipher     =     cipher     +         (  char  )     ((((  a     *     (  msg  [  i  ]  -  'A'  )     )     +     b  )     %     26  )     +     'A'  );      else      //else simply append space character      cipher     +=     msg  [  i  ];         }      return     cipher  ;   }   string     decryptCipher  (  string     cipher  )   {      string     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;          //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )      {      flag     =     (  a     *     i  )     %     26  ;          //Check if (a*i)%26 == 1      //then i will be the multiplicative inverse of a      if     (  flag     ==     1  )      {         a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  length  ();     i  ++  )      {      if  (  cipher  [  i  ]  !=  ' '  )      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      msg     =     msg     +         (  char  )     (((  a_inv     *     ((  cipher  [  i  ]  +  'A'     -     b  ))     %     26  ))     +     'A'  );      else      //else simply append space character      msg     +=     cipher  [  i  ];         }      return     msg  ;   }   //Driver Program   int     main  (  void  )   {      string     msg     =     'AFFINE CIPHER'  ;          //Calling encryption function      string     cipherText     =     encryptMessage  (  msg  );      cout      < <     'Encrypted Message is : '      < <     cipherText   < <  endl  ;          //Calling Decryption function      cout      < <     'Decrypted Message is: '      < <     decryptCipher  (  cipherText  );      return     0  ;   }   
Java
   // Java program to illustrate Affine Cipher   class   GFG      {      // Key values of a and b      static     int     a     =     17  ;      static     int     b     =     20  ;      static     String     encryptMessage  (  char  []     msg  )         {      /// Cipher Text initially empty      String     cipher     =     ''  ;      for     (  int     i     =     0  ;     i      <     msg  .  length  ;     i  ++  )      {      // Avoid space to be encrypted       /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */         if     (  msg  [  i  ]     !=     ' '  )         {      cipher     =     cipher      +     (  char  )     ((((  a     *     (  msg  [  i  ]     -     'A'  ))     +     b  )     %     26  )     +     'A'  );      }     else     // else simply append space character      {      cipher     +=     msg  [  i  ]  ;      }      }      return     cipher  ;      }      static     String     decryptCipher  (  String     cipher  )         {      String     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;      //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )         {      flag     =     (  a     *     i  )     %     26  ;      // Check if (a*i)%26 == 1      // then i will be the multiplicative inverse of a      if     (  flag     ==     1  )         {      a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  length  ();     i  ++  )         {      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */         if     (  cipher  .  charAt  (  i  )     !=     ' '  )         {      msg     =     msg     +     (  char  )     (((  a_inv     *         ((  cipher  .  charAt  (  i  )     +     'A'     -     b  ))     %     26  ))     +     'A'  );      }         else     //else simply append space character      {      msg     +=     cipher  .  charAt  (  i  );      }      }      return     msg  ;      }      // Driver code      public     static     void     main  (  String  []     args  )         {      String     msg     =     'AFFINE CIPHER'  ;      // Calling encryption function      String     cipherText     =     encryptMessage  (  msg  .  toCharArray  ());      System  .  out  .  println  (  'Encrypted Message is : '     +     cipherText  );      // Calling Decryption function      System  .  out  .  println  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));      }   }   // This code contributed by Rajput-Ji   
Python
   # Implementation of Affine Cipher in Python   # Extended Euclidean Algorithm for finding modular inverse   # eg: modinv(7 26) = 15   def   egcd  (  a     b  ):   x    y     u    v   =   0    1     1    0   while   a   !=   0  :   q     r   =   b  //  a     b  %  a   m     n   =   x  -  u  *  q     y  -  v  *  q   b    a     x    y     u    v   =   a    r     u    v     m    n   gcd   =   b   return   gcd     x     y   def   modinv  (  a     m  ):   gcd     x     y   =   egcd  (  a     m  )   if   gcd   !=   1  :   return   None   # modular inverse does not exist   else  :   return   x   %   m   # affine cipher encryption function    # returns the cipher text   def   affine_encrypt  (  text     key  ):      '''    C = (a*P + b) % 26    '''   return   ''  .  join  ([   chr  (((   key  [  0  ]  *  (  ord  (  t  )   -   ord  (  'A'  ))   +   key  [  1  ]   )   %   26  )   +   ord  (  'A'  ))   for   t   in   text  .  upper  ()  .  replace  (  ' '     ''  )   ])   # affine cipher decryption function    # returns original text   def   affine_decrypt  (  cipher     key  ):      '''    P = (a^-1 * (C - b)) % 26    '''   return   ''  .  join  ([   chr  (((   modinv  (  key  [  0  ]   26  )  *  (  ord  (  c  )   -   ord  (  'A'  )   -   key  [  1  ]))   %   26  )   +   ord  (  'A'  ))   for   c   in   cipher   ])   # Driver Code to test the above functions   def   main  ():   # declaring text and key   text   =   'AFFINE CIPHER'   key   =   [  17     20  ]   # calling encryption function   affine_encrypted_text   =   affine_encrypt  (  text     key  )   print  (  'Encrypted Text:   {}  '  .  format  (   affine_encrypted_text   ))   # calling decryption function   print  (  'Decrypted Text:   {}  '  .  format   (   affine_decrypt  (  affine_encrypted_text     key  )   ))   if   __name__   ==   '__main__'  :   main  ()   # This code is contributed by   # Bhushan Borole   
C#
   // C# program to illustrate Affine Cipher   using     System  ;       class     GFG      {      // Key values of a and b      static     int     a     =     17  ;      static     int     b     =     20  ;      static     String     encryptMessage  (  char  []     msg  )         {      /// Cipher Text initially empty      String     cipher     =     ''  ;      for     (  int     i     =     0  ;     i      <     msg  .  Length  ;     i  ++  )      {      // Avoid space to be encrypted       /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      if     (  msg  [  i  ]     !=     ' '  )         {      cipher     =     cipher      +     (  char  )     ((((  a     *     (  msg  [  i  ]     -     'A'  ))     +     b  )     %     26  )     +     'A'  );      }     else     // else simply append space character      {      cipher     +=     msg  [  i  ];      }      }      return     cipher  ;      }      static     String     decryptCipher  (  String     cipher  )         {      String     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;      //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )         {      flag     =     (  a     *     i  )     %     26  ;      // Check if (a*i)%26 == 1      // then i will be the multiplicative inverse of a      if     (  flag     ==     1  )         {      a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  Length  ;     i  ++  )         {      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      if     (  cipher  [  i  ]     !=     ' '  )         {      msg     =     msg     +     (  char  )     (((  a_inv     *         ((  cipher  [  i  ]     +     'A'     -     b  ))     %     26  ))     +     'A'  );      }         else     //else simply append space character      {      msg     +=     cipher  [  i  ];      }      }      return     msg  ;      }      // Driver code      public     static     void     Main  (  String  []     args  )         {      String     msg     =     'AFFINE CIPHER'  ;      // Calling encryption function      String     cipherText     =     encryptMessage  (  msg  .  ToCharArray  ());      Console  .  WriteLine  (  'Encrypted Message is : '     +     cipherText  );      // Calling Decryption function      Console  .  WriteLine  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));      }   }   /* This code contributed by PrinciRaj1992 */   
JavaScript
   //Javascript program to illustrate Affine Cipher   //Key values of a and b   let     a     =     17  ;   let     b     =     20  ;   function     encryptMessage  (  msg  )   {      ///Cipher Text initially empty      let     cipher     =     ''  ;         for     (  let     i     =     0  ;     i      <     msg  .  length  ;     i  ++  )      {      // Avoid space to be encrypted       if  (  msg  [  i  ]     !=  ' '  )         /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      cipher     =     cipher     +     String  .  fromCharCode  ((((  a     *     (  msg  [  i  ].  charCodeAt  (  0  )  -  65  )     )     +     b  )     %     26  )     +     65  );      else      //else simply append space character      cipher     +=     msg  [  i  ];         }      return     cipher  ;   }   function     decryptCipher  (  cipher  )   {      let     msg     =     ''  ;      let     a_inv     =     0  ;      let     flag     =     0  ;          //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  let     i     =     0  ;     i      <     26  ;     i  ++  )      {      flag     =     (  a     *     i  )     %     26  ;          //Check if (a*i)%26 == 1      //then i will be the multiplicative inverse of a      if     (  flag     ==     1  )      {         a_inv     =     i  ;      }      }      for     (  let     i     =     0  ;     i      <     cipher  .  length  ;     i  ++  )      {      if  (  cipher  [  i  ]  !=  ' '  )      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      msg     =     msg     +     String  .  fromCharCode  (((  a_inv     *     ((  cipher  [  i  ].  charCodeAt  (  0  )  +  65     -     b  ))     %     26  ))     +     65  );      else      //else simply append space character      msg     +=     cipher  [  i  ];         }      return     msg  ;   }   //Driver Program   let     msg     =     'AFFINE CIPHER'  ;   //Calling encryption function   let     cipherText     =     encryptMessage  (  msg  );   console  .  log  (  'Encrypted Message is : '     +     cipherText  );   //Calling Decryption function   console  .  log  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));   // The code is contributed by Arushi Jindal.    

Producción
Encrypted Message is : UBBAHK CAPJKX Decrypted Message is: AFFINE CIPHER 

 

Crear cuestionario