Calcular la suma de los divisores de todos los divisores de un número natural.

Calcular la suma de los divisores de todos los divisores de un número natural.
Pruébalo en GfG Practice #practiceLinkDiv { mostrar: ninguno !importante; }

Dado un numero natural norte la tarea es encontrar la suma de los divisores de todos los divisores de n.

Ejemplos:  

  Input :   n = 54   Output :   232 Divisors of 54 = 1 2 3 6 9 18 27 54. Sum of divisors of 1 2 3 6 9 18 27 54 are 1 3 4 12 13 39 40 120 respectively. Sum of divisors of all the divisors of 54 = 1 + 3 + 4 + 12 + 13 + 39 + 40 + 120 = 232.   Input :   n = 10   Output :   28 Divisors of 10 are 1 2 5 10 Sums of divisors of divisors are 1 3 6 18. Overall sum = 1 + 3 + 6 + 18 = 28 
Recommended Practice encontrar la suma de divisores ¡Pruébalo!

Usando el hecho de que cualquier número norte se puede expresar como producto de factores primos norte =p 1 k1 xp 2 k2 x... donde p 1 pag 2 ... son números primos. 
Todos los divisores de n se pueden expresar como p. 1 a xp 2 b x... donde 0 <= a <= k1 and 0 <= b <= k2. 
Ahora la suma de los divisores será la suma de todas las potencias de p. 1 - pag 1 pag 1 1 .... pag 1 k1 multiplicado por todo el poder de p 2 - pag 2 pag 2 1 .... pag 2 k1  
Suma del divisor de n 
= (pag 1 xp 2 ) + (pag 1 1 xp 2 ) +.....+ (p. 1 k1 xp 2 ) +....+ (p. 1 xp 2 1 ) + (pag 1 1 xp 2 1 ) +.....+ (p. 1 k1 xp 2 1 ) +.......+ 
   (pag 1 xp 2 k2 ) + (pag 1 1 xp 2 k2 ) +......+ (p. 1 k1 xp 2 k2 ). 
= (pag 1 +p 1 1 +...+ p 1 k1 ) xp 2 + (pag. 1 +p 1 1 +...+ p 1 k1 ) xp 2 1 +.......+ (p. 1 +p 1 1 +...+ p 1 k1 ) xp 2 k2
= (pag 1 +p 1 1 +...+ p 1 k1 ) x (pag 2 +p 2 1 +...+ p 2 k2 ).

Ahora los divisores de cualquier p a para p como primo son p pag 1 ...... pag a . Y la suma de divisores será (p (un+1) - 1)/(p -1) déjelo definir por f(p). 
Entonces la suma de los divisores de todos los divisores será 
= (f(p 1 ) + f(p 1 1 ) +...+ f(pag 1 k1 )) x (f(pag 2 ) + f(p 2 1 ) +...+ f(pag 2 k2 )).

Entonces, dado un número n, mediante factorización prima podemos encontrar la suma de los divisores de todos los divisores. Pero en este problema se nos da que n es producto del elemento de la matriz. Entonces encuentre la factorización prima de cada elemento y usando el hecho de a b x un do = un b+c .

A continuación se muestra la implementación de este enfoque:  

C++
   // C++ program to find sum of divisors of all   // the divisors of a natural number.   #include       using     namespace     std  ;   // Returns sum of divisors of all the divisors   // of n   int     sumDivisorsOfDivisors  (  int     n  )   {      // Calculating powers of prime factors and      // storing them in a map mp[].      map   <  int       int  >     mp  ;      for     (  int     j  =  2  ;     j   <=  sqrt  (  n  );     j  ++  )      {      int     count     =     0  ;      while     (  n  %  j     ==     0  )      {      n     /=     j  ;      count  ++  ;      }      if     (  count  )      mp  [  j  ]     =     count  ;      }      // If n is a prime number      if     (  n     !=     1  )      mp  [  n  ]     =     1  ;      // For each prime factor calculating (p^(a+1)-1)/(p-1)      // and adding it to answer.      int     ans     =     1  ;      for     (  auto     it     :     mp  )      {      int     pw     =     1  ;      int     sum     =     0  ;      for     (  int     i  =  it  .  second  +  1  ;     i  >=  1  ;     i  --  )      {      sum     +=     (  i  *  pw  );      pw     *=     it  .  first  ;      }      ans     *=     sum  ;      }      return     ans  ;   }   // Driven Program   int     main  ()   {      int     n     =     10  ;      cout      < <     sumDivisorsOfDivisors  (  n  );      return     0  ;   }   
Java
   // Java program to find sum of divisors of all    // the divisors of a natural number.    import     java.util.HashMap  ;   class   GFG      {      // Returns sum of divisors of all the divisors      // of n      public     static     int     sumDivisorsOfDivisors  (  int     n  )      {      // Calculating powers of prime factors and      // storing them in a map mp[].      HashMap   <  Integer       Integer  >     mp     =     new     HashMap   <>  ();      for     (  int     j     =     2  ;     j      <=     Math  .  sqrt  (  n  );     j  ++  )         {      int     count     =     0  ;      while     (  n     %     j     ==     0  )         {      n     /=     j  ;      count  ++  ;      }      if     (  count     !=     0  )      mp  .  put  (  j       count  );      }      // If n is a prime number      if     (  n     !=     1  )      mp  .  put  (  n       1  );      // For each prime factor calculating (p^(a+1)-1)/(p-1)      // and adding it to answer.      int     ans     =     1  ;      for     (  HashMap  .  Entry   <  Integer       Integer  >     entry     :     mp  .  entrySet  ())         {      int     pw     =     1  ;      int     sum     =     0  ;      for     (  int     i     =     entry  .  getValue  ()     +     1  ;     i     >=     1  ;     i  --  )      {      sum     +=     (  i     *     pw  );      pw     *=     entry  .  getKey  ();      }      ans     *=     sum  ;      }      return     ans  ;      }      // Driver code      public     static     void     main  (  String  []     args  )         {      int     n     =     10  ;      System  .  out  .  println  (  sumDivisorsOfDivisors  (  n  ));      }   }   // This code is contributed by   // sanjeev2552   
Python3
   # Python3 program to find sum of divisors    # of all the divisors of a natural number.   import   math   as   mt   # Returns sum of divisors of all    # the divisors of n   def   sumDivisorsOfDivisors  (  n  ):   # Calculating powers of prime factors    # and storing them in a map mp[].   mp   =   dict  ()   for   j   in   range  (  2     mt  .  ceil  (  mt  .  sqrt  (  n  ))):   count   =   0   while   (  n   %   j   ==   0  ):   n   //=   j   count   +=   1   if   (  count  ):   mp  [  j  ]   =   count   # If n is a prime number   if   (  n   !=   1  ):   mp  [  n  ]   =   1   # For each prime factor calculating    # (p^(a+1)-1)/(p-1) and adding it to answer.   ans   =   1   for   it   in   mp  :   pw   =   1   summ   =   0   for   i   in   range  (  mp  [  it  ]   +   1     0     -  1  ):   summ   +=   (  i   *   pw  )   pw   *=   it   ans   *=   summ   return   ans   # Driver Code   n   =   10   print  (  sumDivisorsOfDivisors  (  n  ))   # This code is contributed   # by mohit kumar 29   
C#
   // C# program to find sum of divisors of all    // the divisors of a natural number.    using     System  ;   using     System.Collections.Generic  ;          class     GFG      {      // Returns sum of divisors of       // all the divisors of n      public     static     int     sumDivisorsOfDivisors  (  int     n  )      {      // Calculating powers of prime factors and      // storing them in a map mp[].      Dictionary   <  int           int  >     mp     =     new     Dictionary   <  int        int  >  ();      for     (  int     j     =     2  ;     j      <=     Math  .  Sqrt  (  n  );     j  ++  )         {      int     count     =     0  ;      while     (  n     %     j     ==     0  )         {      n     /=     j  ;      count  ++  ;      }      if     (  count     !=     0  )      mp  .  Add  (  j       count  );      }      // If n is a prime number      if     (  n     !=     1  )      mp  .  Add  (  n       1  );      // For each prime factor       // calculating (p^(a+1)-1)/(p-1)      // and adding it to answer.      int     ans     =     1  ;      foreach  (  KeyValuePair   <  int       int  >     entry     in     mp  )         {      int     pw     =     1  ;      int     sum     =     0  ;      for     (  int     i     =     entry  .  Value     +     1  ;         i     >=     1  ;     i  --  )      {      sum     +=     (  i     *     pw  );      pw     =     entry  .  Key  ;      }      ans     *=     sum  ;      }      return     ans  ;      }      // Driver code      public     static     void     Main  (  String  []     args  )         {      int     n     =     10  ;      Console  .  WriteLine  (  sumDivisorsOfDivisors  (  n  ));      }   }   // This code is contributed   // by Princi Singh   
JavaScript
    <  script  >   // Javascript program to find sum of divisors of all    // the divisors of a natural number.           // Returns sum of divisors of all the divisors      // of n      function     sumDivisorsOfDivisors  (  n  )      {      // Calculating powers of prime factors and      // storing them in a map mp[].      let     mp     =     new     Map  ();      for     (  let     j     =     2  ;     j      <=     Math  .  sqrt  (  n  );     j  ++  )         {      let     count     =     0  ;      while     (  n     %     j     ==     0  )         {      n     =     Math  .  floor  (  n  /  j  );      count  ++  ;      }      if     (  count     !=     0  )      mp  .  set  (  j       count  );      }          // If n is a prime number      if     (  n     !=     1  )      mp  .  set  (  n       1  );          // For each prime factor calculating (p^(a+1)-1)/(p-1)      // and adding it to answer.      let     ans     =     1  ;          for     (  let     [  key       value  ]     of     mp  .  entries  ())         {      let     pw     =     1  ;      let     sum     =     0  ;      for     (  let     i     =     value     +     1  ;     i     >=     1  ;     i  --  )      {      sum     +=     (  i     *     pw  );      pw     =     key  ;      }      ans     *=     sum  ;      }          return     ans  ;      }          // Driver code      let     n     =     10  ;      document  .  write  (  sumDivisorsOfDivisors  (  n  ));           // This code is contributed by patel2127    <  /script>   

Producción:  

28 

Complejidad del tiempo: O (? norte iniciar sesión norte) 
Espacio Auxiliar: En)

Optimizaciones: 
Para los casos en los que hay varias entradas para las que necesitamos encontrar el valor que podemos usar Tamiz de Eratóstenes como se discutió en este correo.


 

Crear cuestionario