Análisis asintótico y comparación de algoritmos de clasificación.

Análisis asintótico y comparación de algoritmos de clasificación.

Es un hecho bien establecido que la ordenación por fusión se ejecuta más rápido que la ordenación por inserción. Usando análisis asintótico . podemos demostrar que la ordenación por fusión se ejecuta en tiempo O (nlogn) y la ordenación por inserción toma O (n^2). Es obvio porque la ordenación por fusión utiliza un enfoque de divide y vencerás al resolver los problemas de forma recursiva, mientras que la ordenación por inserción sigue un enfoque incremental. Si analizamos aún más el análisis de la complejidad del tiempo, sabremos que el tipo de inserción no es tan malo. Sorprendentemente, la ordenación por inserción supera a la ordenación por combinación en un tamaño de entrada más pequeño. Esto se debe a que hay pocas constantes que ignoramos al deducir la complejidad del tiempo. En tamaños de entrada más grandes del orden 10^4 esto no influye en el comportamiento de nuestra función. Pero cuando los tamaños de entrada caen por debajo de, digamos, menos de 40, entonces las constantes de la ecuación dominan el tamaño de entrada 'n'. Hasta ahora, todo bien. Pero no estaba satisfecho con ese análisis matemático. Como estudiantes de informática debemos creer en escribir código. Escribí un programa en C para tener una idea de cómo los algoritmos compiten entre sí por varios tamaños de entrada. Y también por qué se realiza un análisis matemático tan riguroso para establecer las complejidades del tiempo de ejecución de estos algoritmos de clasificación.

Implementación:

CPP
   #include         #include         #include         #include         #define MAX_ELEMENT_IN_ARRAY 1000000001   int     cmpfunc  (  const     void     *  a       const     void     *  b  )   {      // Compare function used by qsort      return     (  *  (  int     *  )  a     -     *  (  int     *  )  b  );   }   int     *  generate_random_array  (  int     n  )   {      srand  (  time  (  NULL  ));      int     *  a     =     malloc  (  sizeof  (  int  )     *     n  );      int     i  ;      for     (  i     =     0  ;     i      <     n  ;     ++  i  )      a  [  i  ]     =     rand  ()     %     MAX_ELEMENT_IN_ARRAY  ;      return     a  ;   }   int     *  copy_array  (  int     a  []     int     n  )   {      int     *  arr     =     malloc  (  sizeof  (  int  )     *     n  );      int     i  ;      for     (  i     =     0  ;     i      <     n  ;     ++  i  )      arr  [  i  ]     =     a  [  i  ];      return     arr  ;   }   // Code for Insertion Sort   void     insertion_sort_asc  (  int     a  []     int     start       int     end  )   {      int     i  ;      for     (  i     =     start     +     1  ;     i      <=     end  ;     ++  i  )      {      int     key     =     a  [  i  ];      int     j     =     i     -     1  ;      while     (  j     >=     start     &&     a  [  j  ]     >     key  )      {      a  [  j     +     1  ]     =     a  [  j  ];      --  j  ;      }      a  [  j     +     1  ]     =     key  ;      }   }   // Code for Merge Sort   void     merge  (  int     a  []     int     start       int     end       int     mid  )   {      int     i     =     start       j     =     mid     +     1       k     =     0  ;      int     *  aux     =     malloc  (  sizeof  (  int  )     *     (  end     -     start     +     1  ));      while     (  i      <=     mid     &&     j      <=     end  )      {      if     (  a  [  i  ]      <=     a  [  j  ])      aux  [  k  ++  ]     =     a  [  i  ++  ];      else      aux  [  k  ++  ]     =     a  [  j  ++  ];      }      while     (  i      <=     mid  )      aux  [  k  ++  ]     =     a  [  i  ++  ];      while     (  j      <=     end  )      aux  [  k  ++  ]     =     a  [  j  ++  ];      j     =     0  ;      for     (  i     =     start  ;     i      <=     end  ;     ++  i  )      a  [  i  ]     =     aux  [  j  ++  ];      free  (  aux  );   }   void     _merge_sort  (  int     a  []     int     start       int     end  )   {      if     (  start      <     end  )      {      int     mid     =     start     +     (  end     -     start  )     /     2  ;      _merge_sort  (  a       start       mid  );      _merge_sort  (  a       mid     +     1       end  );      merge  (  a       start       end       mid  );      }   }   void     merge_sort  (  int     a  []     int     n  )   {      return     _merge_sort  (  a       0       n     -     1  );   }   void     insertion_and_merge_sort_combine  (  int     a  []     int     start       int     end       int     k  )   {      // Performs insertion sort if size of array is less than or equal to k      // Otherwise uses mergesort      if     (  start      <     end  )      {      int     size     =     end     -     start     +     1  ;      if     (  size      <=     k  )      {      return     insertion_sort_asc  (  a       start       end  );      }      int     mid     =     start     +     (  end     -     start  )     /     2  ;      insertion_and_merge_sort_combine  (  a       start       mid       k  );      insertion_and_merge_sort_combine  (  a       mid     +     1       end       k  );      merge  (  a       start       end       mid  );      }   }   void     test_sorting_runtimes  (  int     size       int     num_of_times  )   {      // Measuring the runtime of the sorting algorithms      int     number_of_times     =     num_of_times  ;      int     t     =     number_of_times  ;      int     n     =     size  ;      double     insertion_sort_time     =     0       merge_sort_time     =     0  ;      double     merge_sort_and_insertion_sort_mix_time     =     0       qsort_time     =     0  ;      while     (  t  --  )      {      clock_t     start       end  ;      int     *  a     =     generate_random_array  (  n  );      int     *  b     =     copy_array  (  a       n  );      start     =     clock  ();      insertion_sort_asc  (  b       0       n     -     1  );      end     =     clock  ();      insertion_sort_time     +=     ((  double  )(  end     -     start  ))     /     CLOCKS_PER_SEC  ;      free  (  b  );      int     *  c     =     copy_array  (  a       n  );      start     =     clock  ();      merge_sort  (  c       n  );      end     =     clock  ();      merge_sort_time     +=     ((  double  )(  end     -     start  ))     /     CLOCKS_PER_SEC  ;      free  (  c  );      int     *  d     =     copy_array  (  a       n  );      start     =     clock  ();      insertion_and_merge_sort_combine  (  d       0       n     -     1       40  );      end     =     clock  ();      merge_sort_and_insertion_sort_mix_time     +=     ((  double  )(  end     -     start  ))     /     CLOCKS_PER_SEC  ;      free  (  d  );      start     =     clock  ();      qsort  (  a       n       sizeof  (  int  )     cmpfunc  );      end     =     clock  ();      qsort_time     +=     ((  double  )(  end     -     start  ))     /     CLOCKS_PER_SEC  ;      free  (  a  );      }      insertion_sort_time     /=     number_of_times  ;      merge_sort_time     /=     number_of_times  ;      merge_sort_and_insertion_sort_mix_time     /=     number_of_times  ;      qsort_time     /=     number_of_times  ;      printf  (  '  n  Time taken to sort:  n  '      '%-35s %f  n  '      '%-35s %f  n  '      '%-35s %f  n  '      '%-35s %f  nn  '        '(i)Insertion sort: '        insertion_sort_time        '(ii)Merge sort: '        merge_sort_time        '(iii)Insertion-mergesort-hybrid: '        merge_sort_and_insertion_sort_mix_time        '(iv)Qsort library function: '        qsort_time  );   }   int     main  (  int     argc       char     const     *  argv  [])   {      int     t  ;      scanf  (  '%d'       &  t  );      while     (  t  --  )      {      int     size       num_of_times  ;      scanf  (  '%d %d'       &  size       &  num_of_times  );      test_sorting_runtimes  (  size       num_of_times  );      }      return     0  ;   }   
Java
   import     java.util.Scanner  ;   import     java.util.Arrays  ;   import     java.util.Random  ;   public     class   SortingAlgorithms     {      // Maximum element in array      static     final     int     MAX_ELEMENT_IN_ARRAY     =     1000000001  ;      public     static     void     main  (  String  []     args  )     {      Scanner     scanner     =     new     Scanner  (  System  .  in  );      int     t     =     scanner  .  nextInt  ();      for     (  int     i     =     0  ;     i      <     t  ;     i  ++  )     {      int     size     =     scanner  .  nextInt  ();      int     num_of_times     =     scanner  .  nextInt  ();      testSortingRuntimes  (  size       num_of_times  );      }      scanner  .  close  ();      }          static     int  []     generateRandomArray  (  int     n  )     {      // Generate an array of n random integers.      int  []     arr     =     new     int  [  n  ]  ;      Random     random     =     new     Random  ();      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      arr  [  i  ]     =     random  .  nextInt  (  MAX_ELEMENT_IN_ARRAY  );      }      return     arr  ;      }      static     void     insertionSortAsc  (  int  []     a       int     start       int     end  )     {      // Perform an in-place insertion sort on a from start to end.      for     (  int     i     =     start     +     1  ;     i      <=     end  ;     i  ++  )     {      int     key     =     a  [  i  ]  ;      int     j     =     i     -     1  ;      while     (  j     >=     start     &&     a  [  j  ]     >     key  )     {      a  [  j     +     1  ]     =     a  [  j  ]  ;      j  --  ;      }      a  [  j     +     1  ]     =     key  ;      }      }      static     void     merge  (  int  []     a       int     start       int     end       int     mid  )     {      // Merge two sorted sublists of a.      // The first sublist is a[start:mid+1] and the second sublist is a[mid+1:end+1].      int  []     aux     =     new     int  [  end     -     start     +     1  ]  ;      int     i     =     start       j     =     mid     +     1       k     =     0  ;      while     (  i      <=     mid     &&     j      <=     end  )     {      if     (  a  [  i  ]      <=     a  [  j  ]  )     {      aux  [  k  ++]     =     a  [  i  ++]  ;      }     else     {      aux  [  k  ++]     =     a  [  j  ++]  ;      }      }      while     (  i      <=     mid  )     {      aux  [  k  ++]     =     a  [  i  ++]  ;      }      while     (  j      <=     end  )     {      aux  [  k  ++]     =     a  [  j  ++]  ;      }      System  .  arraycopy  (  aux       0       a       start       aux  .  length  );      }      static     void     mergeSort  (  int  []     a  )     {      // Perform an in-place merge sort on a.      mergeSortHelper  (  a       0       a  .  length     -     1  );      }      static     void     mergeSortHelper  (  int  []     a       int     start       int     end  )     {      // Recursive merge sort function.      if     (  start      <     end  )     {      int     mid     =     start     +     (  end     -     start  )     /     2  ;      mergeSortHelper  (  a       start       mid  );      mergeSortHelper  (  a       mid     +     1       end  );      merge  (  a       start       end       mid  );      }      }      static     void     insertionAndMergeSortCombine  (  int  []     a       int     start       int     end       int     k  )     {      /*    Perform an in-place sort on a from start to end.    If the size of the list is less than or equal to k use insertion sort.    Otherwise use merge sort.    */      if     (  start      <     end  )     {      int     size     =     end     -     start     +     1  ;      if     (  size      <=     k  )     {      insertionSortAsc  (  a       start       end  );      }     else     {      int     mid     =     start     +     (  end     -     start  )     /     2  ;      insertionAndMergeSortCombine  (  a       start       mid       k  );      insertionAndMergeSortCombine  (  a       mid     +     1       end       k  );      merge  (  a       start       end       mid  );      }      }      }      static     void     testSortingRuntimes  (  int     size       int     num_of_times  )     {      // Test the runtime of the sorting algorithms.      double     insertionSortTime     =     0  ;      double     mergeSortTime     =     0  ;      double     mergeSortAndInsertionSortMixTime     =     0  ;      double     qsortTime     =     0  ;      for     (  int     i     =     0  ;     i      <     num_of_times  ;     i  ++  )     {      int  []     a     =     generateRandomArray  (  size  );      int  []     b     =     Arrays  .  copyOf  (  a       a  .  length  );      long     start     =     System  .  currentTimeMillis  ();      insertionSortAsc  (  b       0       b  .  length     -     1  );      long     end     =     System  .  currentTimeMillis  ();      insertionSortTime     +=     end     -     start  ;      int  []     c     =     Arrays  .  copyOf  (  a       a  .  length  );      start     =     System  .  currentTimeMillis  ();      mergeSort  (  c  );      end     =     System  .  currentTimeMillis  ();      mergeSortTime     +=     end     -     start  ;      int  []     d     =     Arrays  .  copyOf  (  a       a  .  length  );      start     =     System  .  currentTimeMillis  ();      insertionAndMergeSortCombine  (  d       0       d  .  length     -     1       40  );      end     =     System  .  currentTimeMillis  ();      mergeSortAndInsertionSortMixTime     +=     end     -     start  ;      int  []     e     =     Arrays  .  copyOf  (  a       a  .  length  );      start     =     System  .  currentTimeMillis  ();      Arrays  .  sort  (  e  );      end     =     System  .  currentTimeMillis  ();      qsortTime     +=     end     -     start  ;      }      insertionSortTime     /=     num_of_times  ;      mergeSortTime     /=     num_of_times  ;      mergeSortAndInsertionSortMixTime     /=     num_of_times  ;      qsortTime     /=     num_of_times  ;      System  .  out  .  println  (  'nTime taken to sort:n'      +     '(i) Insertion sort: '     +     insertionSortTime     +     'n'      +     '(ii) Merge sort: '     +     mergeSortTime     +     'n'      +     '(iii) Insertion-mergesort-hybrid: '     +     mergeSortAndInsertionSortMixTime     +     'n'      +     '(iv) Qsort library function: '     +     qsortTime     +     'n'  );      }   }   
Python3
   import   time   import   random   import   copy   from   typing   import   List   # Maximum element in array   MAX_ELEMENT_IN_ARRAY   =   1000000001   def   generate_random_array  (  n  :   int  )   ->   List  [  int  ]:   #Generate a list of n random integers.   return   [  random  .  randint  (  0     MAX_ELEMENT_IN_ARRAY  )   for   _   in   range  (  n  )]   def   insertion_sort_asc  (  a  :   List  [  int  ]   start  :   int     end  :   int  )   ->   None  :   #Perform an in-place insertion sort on a from start to end.   for   i   in   range  (  start   +   1     end   +   1  ):   key   =   a  [  i  ]   j   =   i   -   1   while   j   >=   start   and   a  [  j  ]   >   key  :   a  [  j   +   1  ]   =   a  [  j  ]   j   -=   1   a  [  j   +   1  ]   =   key   def   merge  (  a  :   List  [  int  ]   start  :   int     end  :   int     mid  :   int  )   ->   None  :   #Merge two sorted sublists of a.   #The first sublist is a[start:mid+1] and the second sublist is a[mid+1:end+1].   aux   =   []   i   =   start   j   =   mid   +   1   while   i    <=   mid   and   j    <=   end  :   if   a  [  i  ]    <=   a  [  j  ]:   aux  .  append  (  a  [  i  ])   i   +=   1   else  :   aux  .  append  (  a  [  j  ])   j   +=   1   while   i    <=   mid  :   aux  .  append  (  a  [  i  ])   i   +=   1   while   j    <=   end  :   aux  .  append  (  a  [  j  ])   j   +=   1   a  [  start  :  end  +  1  ]   =   aux   def   _merge_sort  (  a  :   List  [  int  ]   start  :   int     end  :   int  )   ->   None  :   #Recursive merge sort function.   if   start    <   end  :   mid   =   start   +   (  end   -   start  )   //   2   _merge_sort  (  a     start     mid  )   _merge_sort  (  a     mid   +   1     end  )   merge  (  a     start     end     mid  )   def   merge_sort  (  a  :   List  [  int  ])   ->   None  :   #Perform an in-place merge sort on a.   _merge_sort  (  a     0     len  (  a  )   -   1  )   def   insertion_and_merge_sort_combine  (  a  :   List  [  int  ]   start  :   int     end  :   int     k  :   int  )   ->   None  :      '''    Perform an in-place sort on a from start to end.    If the size of the list is less than or equal to k use insertion sort.    Otherwise use merge sort.    '''   if   start    <   end  :   size   =   end   -   start   +   1   if   size    <=   k  :   insertion_sort_asc  (  a     start     end  )   else  :   mid   =   start   +   (  end   -   start  )   //   2   insertion_and_merge_sort_combine  (  a     start     mid     k  )   insertion_and_merge_sort_combine  (  a     mid   +   1     end     k  )   merge  (  a     start     end     mid  )   def   test_sorting_runtimes  (  size  :   int     num_of_times  :   int  )   ->   None  :   #Test the runtime of the sorting algorithms.   insertion_sort_time   =   0   merge_sort_time   =   0   merge_sort_and_insertion_sort_mix_time   =   0   qsort_time   =   0   for   _   in   range  (  num_of_times  ):   a   =   generate_random_array  (  size  )   b   =   copy  .  deepcopy  (  a  )   start   =   time  .  time  ()   insertion_sort_asc  (  b     0     len  (  b  )   -   1  )   end   =   time  .  time  ()   insertion_sort_time   +=   end   -   start   c   =   copy  .  deepcopy  (  a  )   start   =   time  .  time  ()   merge_sort  (  c  )   end   =   time  .  time  ()   merge_sort_time   +=   end   -   start   d   =   copy  .  deepcopy  (  a  )   start   =   time  .  time  ()   insertion_and_merge_sort_combine  (  d     0     len  (  d  )   -   1     40  )   end   =   time  .  time  ()   merge_sort_and_insertion_sort_mix_time   +=   end   -   start   start   =   time  .  time  ()   a  .  sort  ()   end   =   time  .  time  ()   qsort_time   +=   end   -   start   insertion_sort_time   /=   num_of_times   merge_sort_time   /=   num_of_times   merge_sort_and_insertion_sort_mix_time   /=   num_of_times   qsort_time   /=   num_of_times   print  (  f  '  n  Time taken to sort:  n  '   f  '(i)Insertion sort:   {  insertion_sort_time  }  n  '   f  '(ii)Merge sort:   {  merge_sort_time  }  n  '   f  '(iii)Insertion-mergesort-hybrid:   {  merge_sort_and_insertion_sort_mix_time  }  n  '   f  '(iv)Qsort library function:   {  qsort_time  }  n  '  )   def   main  ()   ->   None  :   t   =   int  (  input  ())   for   _   in   range  (  t  ):   size     num_of_times   =   map  (  int     input  ()  .  split  ())   test_sorting_runtimes  (  size     num_of_times  )   if   __name__   ==   '__main__'  :   main  ()   
JavaScript
   // Importing required modules   const     {     performance     }     =     require  (  'perf_hooks'  );   // Maximum element in array   const     MAX_ELEMENT_IN_ARRAY     =     1000000001  ;   // Function to generate a list of n random integers   function     generateRandomArray  (  n  )     {      return     Array  .  from  ({  length  :     n  }     ()     =>     Math  .  floor  (  Math  .  random  ()     *     MAX_ELEMENT_IN_ARRAY  ));   }   // Function to perform an in-place insertion sort on a from start to end   function     insertionSortAsc  (  a       start       end  )     {      for     (  let     i     =     start     +     1  ;     i      <=     end  ;     i  ++  )     {      let     key     =     a  [  i  ];      let     j     =     i     -     1  ;      while     (  j     >=     start     &&     a  [  j  ]     >     key  )     {      a  [  j     +     1  ]     =     a  [  j  ];      j     -=     1  ;      }      a  [  j     +     1  ]     =     key  ;      }   }   // Function to merge two sorted sublists of a   function     merge  (  a       start       end       mid  )     {      let     aux     =     [];      let     i     =     start  ;      let     j     =     mid     +     1  ;      while     (  i      <=     mid     &&     j      <=     end  )     {      if     (  a  [  i  ]      <=     a  [  j  ])     {      aux  .  push  (  a  [  i  ]);      i     +=     1  ;      }     else     {      aux  .  push  (  a  [  j  ]);      j     +=     1  ;      }      }      while     (  i      <=     mid  )     {      aux  .  push  (  a  [  i  ]);      i     +=     1  ;      }      while     (  j      <=     end  )     {      aux  .  push  (  a  [  j  ]);      j     +=     1  ;      }      for     (  let     i     =     start  ;     i      <=     end  ;     i  ++  )     {      a  [  i  ]     =     aux  [  i     -     start  ];      }   }   // Recursive merge sort function   function     _mergeSort  (  a       start       end  )     {      if     (  start      <     end  )     {      let     mid     =     start     +     Math  .  floor  ((  end     -     start  )     /     2  );      _mergeSort  (  a       start       mid  );      _mergeSort  (  a       mid     +     1       end  );      merge  (  a       start       end       mid  );      }   }   // Function to perform an in-place merge sort on a   function     mergeSort  (  a  )     {      _mergeSort  (  a       0       a  .  length     -     1  );   }   // Function to perform an in-place sort on a from start to end   function     insertionAndMergeSortCombine  (  a       start       end       k  )     {      if     (  start      <     end  )     {      let     size     =     end     -     start     +     1  ;      if     (  size      <=     k  )     {      insertionSortAsc  (  a       start       end  );      }     else     {      let     mid     =     start     +     Math  .  floor  ((  end     -     start  )     /     2  );      insertionAndMergeSortCombine  (  a       start       mid       k  );      insertionAndMergeSortCombine  (  a       mid     +     1       end       k  );      merge  (  a       start       end       mid  );      }      }   }   // Function to test the runtime of the sorting algorithms   function     testSortingRuntimes  (  size       numOfTimes  )     {      let     insertionSortTime     =     0  ;      let     mergeSortTime     =     0  ;      let     mergeSortAndInsertionSortMixTime     =     0  ;      let     qsortTime     =     0  ;      for     (  let     _     =     0  ;     _      <     numOfTimes  ;     _  ++  )     {      let     a     =     generateRandomArray  (  size  );      let     b     =     [...  a  ];      let     start     =     performance  .  now  ();      insertionSortAsc  (  b       0       b  .  length     -     1  );      let     end     =     performance  .  now  ();      insertionSortTime     +=     end     -     start  ;      let     c     =     [...  a  ];      start     =     performance  .  now  ();      mergeSort  (  c  );      end     =     performance  .  now  ();      mergeSortTime     +=     end     -     start  ;      let     d     =     [...  a  ];      start     =     performance  .  now  ();      insertionAndMergeSortCombine  (  d       0       d  .  length     -     1       40  );      end     =     performance  .  now  ();      mergeSortAndInsertionSortMixTime     +=     end     -     start  ;      start     =     performance  .  now  ();      a  .  sort  ((  a       b  )     =>     a     -     b  );      end     =     performance  .  now  ();      qsortTime     +=     end     -     start  ;      }      insertionSortTime     /=     numOfTimes  ;      mergeSortTime     /=     numOfTimes  ;      mergeSortAndInsertionSortMixTime     /=     numOfTimes  ;      qsortTime     /=     numOfTimes  ;      console  .  log  (  `nTime taken to sort:n(i)Insertion sort:   ${  insertionSortTime  }  n(ii)Merge sort:   ${  mergeSortTime  }  n(iii)Insertion-mergesort-hybrid:   ${  mergeSortAndInsertionSortMixTime  }  n(iv)Qsort library function:   ${  qsortTime  }  n`  );   }   // Main function   function     main  ()     {      let     t     =     parseInt  (  prompt  (  'Enter the number of test cases: '  ));      for     (  let     _     =     0  ;     _      <     t  ;     _  ++  )     {      let     size     =     parseInt  (  prompt  (  'Enter the size of the array: '  ));      let     numOfTimes     =     parseInt  (  prompt  (  'Enter the number of times to run the test: '  ));      testSortingRuntimes  (  size       numOfTimes  );      }   }   // Call the main function   main  ();   

He comparado los tiempos de ejecución de los siguientes algoritmos:

  • Orden de inserción : El algoritmo tradicional sin modificaciones/optimización. Funciona muy bien para tamaños de entrada más pequeños. Y sí, supera la ordenación por combinación
  • va el destino : Sigue el enfoque de divide y vencerás. Para tamaños de entrada del orden de 10^5, este algoritmo es la elección correcta. Hace que la ordenación por inserción no sea práctica para tamaños de entrada tan grandes.
  • Versión combinada de ordenación por inserción y ordenación por combinación: He modificado un poco la lógica de ordenación por combinación para lograr un tiempo de ejecución considerablemente mejor para tamaños de entrada más pequeños. Como sabemos, merge sort divide su entrada en dos mitades hasta que sea lo suficientemente trivial como para ordenar los elementos. Pero aquí, cuando el tamaño de entrada cae por debajo de un umbral como 'n' < 40 then this hybrid algorithm makes a call to traditional insertion sort procedure. From the fact that insertion sort runs faster on smaller inputs and merge sort runs faster on larger inputs this algorithm makes best use both the worlds.
  • Clasificación rápida: No he implementado este procedimiento. Esta es la función de biblioteca qsort() que está disponible en formato . He considerado este algoritmo para conocer el significado de la implementación. Se requiere una gran experiencia en programación para minimizar la cantidad de pasos y aprovechar al máximo las primitivas del lenguaje subyacente para implementar un algoritmo de la mejor manera posible. Esta es la razón principal por la que se recomienda utilizar funciones de biblioteca. Están escritos para manejar cualquier cosa. Se optimizan al máximo posible. ¡Y antes de que me olvide de mi análisis, qsort() se ejecuta increíblemente rápido en prácticamente cualquier tamaño de entrada!

El análisis:

  • Aporte: El usuario debe proporcionar la cantidad de veces que desea probar el algoritmo correspondiente a la cantidad de casos de prueba. Para cada caso de prueba, el usuario debe ingresar dos números enteros separados por espacios que indican el tamaño de entrada 'n' y el 'num_of_times' que indica la cantidad de veces que desea ejecutar el análisis y tomar el promedio. (Aclaración: si 'num_of_times' es 10, entonces cada uno de los algoritmos especificados anteriormente se ejecuta 10 veces y se toma el promedio. Esto se hace porque la matriz de entrada se genera aleatoriamente correspondiente al tamaño de entrada que usted especifica. La matriz de entrada podría estar toda ordenada. Nuestro podría corresponder al peor de los casos, es decir, orden descendente. Para evitar tiempos de ejecución de dichas matrices de entrada. El algoritmo se ejecuta 'num_of_times' y se toma el promedio). Rutina clock() y la macro CLOCKS_PER_SEC se utiliza para medir el tiempo necesario. Compilación: he escrito el código anterior en un entorno Linux (Ubuntu 16.04 LTS). Copie el fragmento de código de arriba. Compílelo usando la clave gcc en las entradas como se especifica y admire el poder de los algoritmos de clasificación.
  • Resultados:  Como puede ver, para tamaños de entrada pequeños, la inserción ordena los tiempos, la combinación se ordena por 2 * 10 ^ -6 seg. Pero esta diferencia de tiempo no es tan significativa. Por otro lado, el algoritmo híbrido y la función de biblioteca qsort() funcionan tan bien como la ordenación por inserción. Análisis asintótico de Algos_0 El tamaño de entrada ahora aumenta aproximadamente 100 veces hasta n = 1000 desde n = 30. La diferencia ahora es tangible. La ordenación por combinación se ejecuta 10 veces más rápido que la ordenación por inserción. Nuevamente existe un vínculo entre el desempeño del algoritmo híbrido y la rutina qsort(). Esto sugiere que qsort() se implementa de una manera que es más o menos similar a nuestro algoritmo híbrido, es decir, cambiando entre diferentes algoritmos para aprovecharlos al máximo. Análisis asintótico de Algos_1 Finalmente, el tamaño de entrada se incrementa a 10^5 (¡1 Lakh!), que probablemente sea el tamaño ideal utilizado en escenarios prácticos. En comparación con la entrada anterior n = 1000, donde la ordenación por combinación venció a la ordenación por inserción al ejecutarse 10 veces más rápido, aquí la diferencia es aún más significativa. ¡La clasificación por combinación supera la clasificación por inserción 100 veces! De hecho, el algoritmo híbrido que hemos escrito supera la clasificación por fusión tradicional al ejecutarse 0,01 segundos más rápido. Y, por último, qsort() la función de biblioteca finalmente nos demuestra que la implementación también juega un papel crucial al medir meticulosamente los tiempos de ejecución al ejecutar 3 milisegundos más rápido. :D
Análisis asintótico de Algos_2

Nota: No ejecute el programa anterior con n >= 10^6 ya que requerirá mucha potencia informática. ¡Gracias y feliz codificación! :)

Crear cuestionario