Mindestsegmente in der Sieben-Segment-Anzeige

Mindestsegmente in der Sieben-Segment-Anzeige

Zur Anzeige von Zahlen kann eine Sieben-Segment-Anzeige verwendet werden. Gegeben eine Reihe von N natürliche Zahlen. Die Aufgabe besteht darin, die Zahl im Array zu finden, die die minimale Anzahl von Segmenten verwendet, um die Zahl anzuzeigen. Wenn mehrere Zahlen eine Mindestanzahl an Segmenten haben, wird die Zahl mit dem kleinsten Index ausgegeben.

Sieben-Segment-Anzeige

Beispiele:   

Eingabe: arr[] = { 1 2 3 4 5 }.
Ausgabe : 1
Erläuterung: Das Element, das die minimale Anzahl von Segmenten verwendet, ist 1 (d. h. 2 Segmente).

Eingabe: arr[] = { 489 206 745 123 756 }.
Ausgabe : 745
Erläuterung: Das Element mit dem kleinsten Index, das die minimale Anzahl von Segmenten verwendet, ist 745 (d. h. 12 Segmente).

Die Idee besteht darin, die Anzahl der von den Ziffern 0 bis 9 verwendeten Segmente vorab zu berechnen und zu speichern. Summieren Sie nun für jedes Element des Arrays die Anzahl der Segmente, die von jeder Ziffer verwendet werden. Suchen Sie dann das Element, das die minimale Anzahl an Segmenten verwendet.

Die Anzahl der von Ziffer verwendeten Segmente: 
0 -> 6 
1 -> 2 
2 -> 5 
3 -> 5 
4 -> 4 
5 -> 5 
6 -> 6 
7 -> 3 
8 -> 7 
9 -> 6

C++
   #include       using     namespace     std  ;   // Precomputed values of segment used by digit 0 to 9.   const     int     seg  [  10  ]     =     {     6       2       5       5       4       5       6       3       7       6  };   // Return the number of segments used by x.   int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x  )      {      count     +=     seg  [  x  %  10  ];      x     /=     10  ;      }      return     count  ;   }   int     elementMinSegment  (  vector   <  int  >     arr       int     n  )   {      // Initialising the minimum segment and minimum      // number index.      int     minseg     =     computeSegment  (  arr  [  0  ]);      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }   int     main  ()   {      vector   <  int  >     arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  size  ();         cout      < <     elementMinSegment  (  arr       n  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.io.*  ;   class   GFG     {       // Precomputed values of segment    // used by digit 0 to 9.   static     int     []  seg     =     {     6       2       5       5       4       5       6       3       7       6  };   // Return the number of segments used by x.   static     int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ]  ;      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ]  ;      x     /=     10  ;      }      return     count  ;   }   static     int     elementMinSegment  (  int     []  arr       int     n  )   {      // Initialising the minimum segment       // and minimum number index.      int     minseg     =     computeSegment  (  arr  [  0  ]  );      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]  );      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ]  ;   }      static     public     void     main     (  String  []     args  )      {      int     []  arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  elementMinSegment  (  arr       n  ));      }   }   
Python
   # Precomputed values of segment   # used by digit 0 to 9.   seg   =   [  6     2     5     5     4     5     6     3     7     6  ]   # Return the number of   # segments used by x.   def   computeSegment  (  x  ):   if  (  x   ==   0  ):   return   seg  [  0  ]   count   =   0   # Finding sum of the segment    # used by each digit of a number.   while  (  x  ):   count   +=   seg  [  x   %   10  ]   x   =   x   //   10   return   count   # function to return minimum sum index   def   elementMinSegment  (  arr     n  ):   # Initialising the minimum    # segment and minimum number index.   minseg   =   computeSegment  (  arr  [  0  ])   minindex   =   0   # Finding and comparing segment   # used by each number arr[i].   for   i   in   range  (  1     n  ):   temp   =   computeSegment  (  arr  [  i  ])   # If arr[i] used less segment   # then update minimum segment   # and minimum number.   if  (  temp    <   minseg  ):   minseg   =   temp   minindex   =   i   return   arr  [  minindex  ]   # Driver Code   arr   =   [  489     206     745     123     756  ]   n   =   len  (  arr  )   # function print required answer   print  (  elementMinSegment  (  arr     n  ))   # This code is contributed by   # Sanjit_Prasad   
C#
   using     System  ;   class     GFG  {       // Precomputed values of segment   // used by digit 0 to 9.   static     int     []  seg     =     new     int  [  10  ]{     6       2       5       5       4        5       6       3       7       6  };   // Return the number of segments used by x.   static     int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ];      x     /=     10  ;      }      return     count  ;   }   static     int     elementMinSegment  (  int     []  arr       int     n  )   {      // Initialising the minimum segment      // and minimum number index.      int     minseg     =     computeSegment  (  arr  [  0  ]);      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }      static     public     void     Main  ()      {      int     []  arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  Length  ;      Console  .  WriteLine  (  elementMinSegment  (  arr       n  ));      }   }   
JavaScript
   // Precomputed values of segment   // used by digit 0 to 9.   let     seg     =     [     6       2       5       5       4       5       6       3       7       6  ];   // Return the number of segments used by x.   function     computeSegment  (  x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      let     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ];      x     =     parseInt  (  x     /     10       10  );      }      return     count  ;   }   function     elementMinSegment  (  arr       n  )   {          // Initialising the minimum segment      // and minimum number index.      let     minseg     =     computeSegment  (  arr  [  0  ]);      let     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for  (  let     i     =     1  ;     i      <     n  ;     i  ++  )      {      let     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }   // Driver code   let     arr     =     [     489       206       745       123       756     ];   let     n     =     arr  .  length  ;   console  .  log  (  elementMinSegment  (  arr       n  ));   

Ausgabe
745 

Zeitkomplexität: O(n * log 10 N)
Hilfsraum: O(10)

Quiz erstellen