Längstmögliche Route in einer Matrix mit Hürden

Längstmögliche Route in einer Matrix mit Hürden
Probieren Sie es bei GfG Practice aus Längstmögliche Route in einer Matrix mit Hürden

Gegeben sei eine 2D-Binärmatrix zusammen mit[][] wobei einige Zellen Hürden darstellen (gekennzeichnet mit 0 ) und der Rest sind freie Zellen (gekennzeichnet mit 1 ) Ihre Aufgabe besteht darin, die Länge der längstmöglichen Route von einer Quellzelle aus zu ermitteln (xs ys) zu einer Zielzelle (xd yd) .

  • Sie können sich nur zu benachbarten Zellen bewegen (oben, unten, links, rechts).
  • Diagonale Bewegungen sind nicht erlaubt.
  • Eine einmal in einem Pfad besuchte Zelle kann auf demselben Pfad nicht erneut besucht werden.
  • Wenn es unmöglich ist, das Ziel zu erreichen, kehren Sie zurück -1 .

Beispiele:
Eingang: xs = 0 ys = 0 xd = 1 yd = 7
with[][] = [ [1 1 1 1 1 1 1 1 1 1]
[1 1 0 1 1 0 1 1 0 1]
[1 1 1 1 1 1 1 1 1 1] ]
Ausgabe: 24
Erläuterung:

Eingang: xs = 0 ys = 3 xd = 2 yd = 2
mit[][] =[ [1 0 0 1 0]
[0 0 0 1 0]
[0 1 1 0 0] ]
Ausgabe: -1
Erläuterung:
Wir sehen, dass es unmöglich ist
Erreichen Sie die Zelle (22) von (03).

Inhaltsverzeichnis

[Ansatz] Verwendung von Backtracking mit Visited Matrix

Die Idee ist zu verwenden Zurückverfolgen . Wir gehen von der Quellzelle der Matrix aus vorwärts in alle vier erlaubten Richtungen und prüfen rekursiv, ob sie zur Lösung führen oder nicht. Wenn das Ziel gefunden wird, aktualisieren wir den Wert des längsten Pfads. Wenn keine der oben genannten Lösungen funktioniert, geben wir von unserer Funktion „false“ zurück.

CPP
   #include          #include         #include         #include          using     namespace     std  ;   // Function to find the longest path using backtracking   int     dfs  (  vector   <  vector   <  int  >>     &  mat           vector   <  vector   <  bool  >>     &  visited       int     i           int     j       int     x       int     y  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||         mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ])     {      return     -1  ;         }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          int     maxPath     =     -1  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited           ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -1  )     {      maxPath     =     max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;   }   int     findLongestPath  (  vector   <  vector   <  int  >>     &  mat           int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -1  ;      }          vector   <  vector   <  bool  >>     visited  (  m       vector   <  bool  >  (  n       false  ));      return     dfs  (  mat       visited       xs       ys       xd       yd  );   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -1  )      cout      < <     result      < <     endl  ;      else      cout      < <     -1      < <     endl  ;          return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   GFG     {          // Function to find the longest path using backtracking      public     static     int     dfs  (  int  [][]     mat       boolean  [][]     visited        int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ]  )     {      return     -  1  ;     // Invalid path      }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       visited       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;      }          public     static     int     findLongestPath  (  int  [][]     mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -  1  ;      }          boolean  [][]     visited     =     new     boolean  [  m  ][  n  ]  ;      return     dfs  (  mat       visited       xs       ys       xd       yd  );      }          public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;      int     xd     =     1       yd     =     7  ;          int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      System  .  out  .  println  (  result  );      else      System  .  out  .  println  (  -  1  );      }   }   
Python
   # Function to find the longest path using backtracking   def   dfs  (  mat     visited     i     j     x     y  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # If destination is reached   if   i   ==   x   and   j   ==   y  :   return   0   # If cell is invalid blocked or already visited   if   i    <   0   or   i   >=   m   or   j    <   0   or   j   >=   n   or   mat  [  i  ][  j  ]   ==   0   or   visited  [  i  ][  j  ]:   return   -  1   # Invalid path   # Mark current cell as visited   visited  [  i  ][  j  ]   =   True   maxPath   =   -  1   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   pathLength   =   dfs  (  mat     visited     ni     nj     x     y  )   # If a valid path is found from this direction   if   pathLength   !=   -  1  :   maxPath   =   max  (  maxPath     1   +   pathLength  )   # Backtrack - unmark current cell   visited  [  i  ][  j  ]   =   False   return   maxPath   def   findLongestPath  (  mat     xs     ys     xd     yd  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # Check if source or destination is blocked   if   mat  [  xs  ][  ys  ]   ==   0   or   mat  [  xd  ][  yd  ]   ==   0  :   return   -  1   visited   =   [[  False   for   _   in   range  (  n  )]   for   _   in   range  (  m  )]   return   dfs  (  mat     visited     xs     ys     xd     yd  )   def   main  ():   mat   =   [   [  1     1     1     1     1     1     1     1     1     1  ]   [  1     1     0     1     1     0     1     1     0     1  ]   [  1     1     1     1     1     1     1     1     1     1  ]   ]   xs     ys   =   0     0   xd     yd   =   1     7   result   =   findLongestPath  (  mat     xs     ys     xd     yd  )   if   result   !=   -  1  :   print  (  result  )   else  :   print  (  -  1  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG   {      // Function to find the longest path using backtracking      static     int     dfs  (  int  []     mat       bool  []     visited           int     i       int     j       int     x       int     y  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )      {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i       j  ]     ==     0     ||     visited  [  i       j  ])      {      return     -  1  ;     // Invalid path      }          // Mark current cell as visited      visited  [  i       j  ]     =     true  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )      {      maxPath     =     Math  .  Max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i       j  ]     =     false  ;          return     maxPath  ;      }          static     int     FindLongestPath  (  int  []     mat       int     xs       int     ys       int     xd       int     yd  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // Check if source or destination is blocked      if     (  mat  [  xs       ys  ]     ==     0     ||     mat  [  xd       yd  ]     ==     0  )      {      return     -  1  ;      }          bool  []     visited     =     new     bool  [  m       n  ];      return     dfs  (  mat       visited       xs       ys       xd       yd  );      }          static     void     Main  ()      {      int  []     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     FindLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      Console  .  WriteLine  (  result  );      else      Console  .  WriteLine  (  -  1  );      }   }   
JavaScript
   // Function to find the longest path using backtracking   function     dfs  (  mat       visited       i       j       x       y  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // If destination is reached      if     (  i     ===     x     &&     j     ===     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||         mat  [  i  ][  j  ]     ===     0     ||     visited  [  i  ][  j  ])     {      return     -  1  ;         }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          let     maxPath     =     -  1  ;          // Four possible moves: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       visited           ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !==     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;   }   function     findLongestPath  (  mat       xs       ys       xd       yd  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ===     0     ||     mat  [  xd  ][  yd  ]     ===     0  )     {      return     -  1  ;      }          const     visited     =     Array  (  m  ).  fill  ().  map  (()     =>     Array  (  n  ).  fill  (  false  ));      return     dfs  (  mat       visited       xs       ys       xd       yd  );   }      const     mat     =     [      [  1       1       1       1       1       1       1       1       1       1  ]      [  1       1       0       1       1       0       1       1       0       1  ]      [  1       1       1       1       1       1       1       1       1       1  ]      ];          const     xs     =     0       ys     =     0  ;         const     xd     =     1       yd     =     7  ;             const     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !==     -  1  )      console  .  log  (  result  );      else      console  .  log  (  -  1  );   

Ausgabe
24  

Zeitkomplexität: O(4^(m*n)) Für jede Zelle in der m x n-Matrix untersucht der Algorithmus bis zu vier mögliche Richtungen (oben unten links rechts), was zu einer exponentiellen Anzahl von Pfaden führt. Im schlimmsten Fall werden alle möglichen Pfade untersucht, was zu einer Zeitkomplexität von 4^(m*n) führt.
Hilfsraum: O(m*n) Der Algorithmus verwendet eine m x n besuchte Matrix, um besuchte Zellen zu verfolgen, und einen Rekursionsstapel, der im schlimmsten Fall (z. B. beim Erkunden eines Pfads, der alle Zellen abdeckt) bis zu einer Tiefe von m * n anwachsen kann. Somit ist der Hilfsraum O(m*n).

[Optimierter Ansatz] Ohne zusätzlichen Platzbedarf

Anstatt eine separate besuchte Matrix zu verwalten, können wir dies tun Wiederverwendung der Eingabematrix um besuchte Zellen während der Durchquerung zu markieren. Dies spart zusätzlichen Platz und stellt dennoch sicher, dass wir nicht dieselbe Zelle in einem Pfad erneut aufrufen.

Nachfolgend finden Sie die schrittweise Vorgehensweise:

  1. Beginnen Sie mit der Quellzelle (xs ys) .
  2. Erkunden Sie bei jedem Schritt alle vier möglichen Richtungen (rechts unten, links oben).
  3. Für jeden gültigen Zug:
    • Überprüfen Sie die Grenzen und stellen Sie sicher, dass die Zelle einen Wert hat 1 (freie Zelle).
    • Markieren Sie die Zelle als besucht, indem Sie sie vorübergehend auf setzen 0 .
    • Rekursieren Sie in die nächste Zelle und erhöhen Sie die Pfadlänge.
  4. Wenn die Zielzelle (xd yd) Ist erreicht, vergleichen Sie die aktuelle Pfadlänge mit dem bisherigen Maximum und aktualisieren Sie die Antwort.
  5. Zurückverfolgen: Stellen Sie den ursprünglichen Wert der Zelle wieder her ( 1 ), bevor Sie zurückkehren, damit andere Pfade es erkunden können.
  6. Fahren Sie mit der Erkundung fort, bis alle möglichen Pfade besucht sind.
  7. Gibt die maximale Pfadlänge zurück. Wenn das Ziel nicht erreichbar ist, kehren Sie zurück -1
C++
   #include          #include         #include         #include          using     namespace     std  ;   // Function to find the longest path using backtracking without extra space   int     dfs  (  vector   <  vector   <  int  >>     &  mat       int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0  )     {      return     -1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          int     maxPath     =     -1  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -1  )     {      maxPath     =     max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;   }   int     findLongestPath  (  vector   <  vector   <  int  >>     &  mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -1  )      cout      < <     result      < <     endl  ;      else      cout      < <     -1      < <     endl  ;          return     0  ;   }   
Java
   public     class   GFG     {          // Function to find the longest path using backtracking without extra space      public     static     int     dfs  (  int  [][]     mat       int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0  )     {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;      }          public     static     int     findLongestPath  (  int  [][]     mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );      }          public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      System  .  out  .  println  (  result  );      else      System  .  out  .  println  (  -  1  );      }   }   
Python
   # Function to find the longest path using backtracking without extra space   def   dfs  (  mat     i     j     x     y  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # If destination is reached   if   i   ==   x   and   j   ==   y  :   return   0   # If cell is invalid or blocked (0 means blocked or visited)   if   i    <   0   or   i   >=   m   or   j    <   0   or   j   >=   n   or   mat  [  i  ][  j  ]   ==   0  :   return   -  1   # Mark current cell as visited by temporarily setting it to 0   mat  [  i  ][  j  ]   =   0   maxPath   =   -  1   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   pathLength   =   dfs  (  mat     ni     nj     x     y  )   # If a valid path is found from this direction   if   pathLength   !=   -  1  :   maxPath   =   max  (  maxPath     1   +   pathLength  )   # Backtrack - restore the cell's original value (1)   mat  [  i  ][  j  ]   =   1   return   maxPath   def   findLongestPath  (  mat     xs     ys     xd     yd  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # Check if source or destination is blocked   if   mat  [  xs  ][  ys  ]   ==   0   or   mat  [  xd  ][  yd  ]   ==   0  :   return   -  1   return   dfs  (  mat     xs     ys     xd     yd  )   def   main  ():   mat   =   [   [  1     1     1     1     1     1     1     1     1     1  ]   [  1     1     0     1     1     0     1     1     0     1  ]   [  1     1     1     1     1     1     1     1     1     1  ]   ]   xs     ys   =   0     0   xd     yd   =   1     7   result   =   findLongestPath  (  mat     xs     ys     xd     yd  )   if   result   !=   -  1  :   print  (  result  )   else  :   print  (  -  1  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG   {      // Function to find the longest path using backtracking without extra space      static     int     dfs  (  int  []     mat       int     i       int     j       int     x       int     y  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )      {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i       j  ]     ==     0  )      {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i       j  ]     =     0  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )      {      maxPath     =     Math  .  Max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i       j  ]     =     1  ;          return     maxPath  ;      }          static     int     FindLongestPath  (  int  []     mat       int     xs       int     ys       int     xd       int     yd  )      {      // Check if source or destination is blocked      if     (  mat  [  xs       ys  ]     ==     0     ||     mat  [  xd       yd  ]     ==     0  )      {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );      }          static     void     Main  ()      {      int  []     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     FindLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      Console  .  WriteLine  (  result  );      else      Console  .  WriteLine  (  -  1  );      }   }   
JavaScript
   // Function to find the longest path using backtracking without extra space   function     dfs  (  mat       i       j       x       y  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // If destination is reached      if     (  i     ===     x     &&     j     ===     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ===     0  )     {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          let     maxPath     =     -  1  ;          // Four possible moves: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !==     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;   }   function     findLongestPath  (  mat       xs       ys       xd       yd  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ===     0     ||     mat  [  xd  ][  yd  ]     ===     0  )     {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );   }      const     mat     =     [      [  1       1       1       1       1       1       1       1       1       1  ]      [  1       1       0       1       1       0       1       1       0       1  ]      [  1       1       1       1       1       1       1       1       1       1  ]      ];          const     xs     =     0       ys     =     0  ;         const     xd     =     1       yd     =     7  ;             const     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !==     -  1  )      console  .  log  (  result  );      else      console  .  log  (  -  1  );   

Ausgabe
24  

Zeitkomplexität: O(4^(m*n))Der Algorithmus untersucht immer noch bis zu vier Richtungen pro Zelle in der m x n-Matrix, was zu einer exponentiellen Anzahl von Pfaden führt. Die direkte Änderung hat keinen Einfluss auf die Anzahl der untersuchten Pfade, sodass die Zeitkomplexität weiterhin 4^(m*n) beträgt.
Hilfsraum: O(m*n) Während die besuchte Matrix durch direktes Ändern der Eingabematrix eliminiert wird, benötigt der Rekursionsstapel immer noch O(m*n) Platz, da die maximale Rekursionstiefe im schlimmsten Fall m * n betragen kann (z. B. ein Pfad, der alle Zellen in einem Gitter mit überwiegend Einsen besucht).