K'th Boom-Nummer

K'th Boom-Nummer
Probieren Sie es bei GfG Practice aus #practiceLinkDiv { display: none !important; }

Boom-Zahlen sind Zahlen, die nur aus den Ziffern 2 und 3 bestehen. Gegeben sei eine ganze Zahl k (0 Beispiele: 

Input : k = 2 Output: 3 Input : k = 3 Output: 22 Input : k = 100 Output: 322323 Input: k = 1000000 Output: 3332322223223222223 
Recommended Practice K-te Boom-Nummer Probieren Sie es aus!

Die Idee ist sehr einfach Generieren Sie Binärzahlen . Auch hier verwenden wir den gleichen Ansatz  

Wir verwenden die Warteschlangendatenstruktur, um dieses Problem zu lösen. Stellen Sie zuerst „2“ und dann „3“ in die Warteschlange. Diese beiden sind die erste bzw. zweite Boom-Nummer. Setzen Sie nun count=2 für jedes Mal, wenn pop() vor der Warteschlange steht, hängen Sie „2“ an die gepoppte Zahl an und erhöhen Sie count++, wenn (count==k), dann drucken Sie den aktuellen Wert Boom-Nummer andernfalls '3' an die ausgegebene Zahl anhängen und count++ erhöhen, wenn (count==k), dann aktuelle Ausgabe ausgeben Boom-Nummer . Wiederholen Sie den Vorgang, bis wir K'th erreichen Boom-Nummer .

Dieser Ansatz kann als BFS eines Baums mit der Wurzel als leerer Zeichenfolge angesehen werden. Dem linken Kind jedes Knotens ist eine 2 angehängt und dem rechten Kind ist eine 3 angehängt. 

Nachfolgend finden Sie die Umsetzung dieser Idee. 

C++
   // C++ program to find K'th Boom number   #include       using     namespace     std  ;   typedef     long     long     int     ll  ;   // This function uses queue data structure to K'th   // Boom number   void     boomNumber  (  ll     k  )   {      // Create an empty queue of strings      queue   <  string  >     q  ;      // Enqueue an empty string      q  .  push  (  ''  );      // counter for K'th element      ll     count     =     0  ;      // This loop checks the value of count to      // become equal to K when value of count      // will be equals to k we will print the      // Boom number      while     (  count      <=     k  )      {      // current Boom number      string     s1     =     q  .  front  ();      // pop front      q  .  pop  ();      // Store current Boom number before changing it      string     s2     =     s1  ;      // Append '2' to string s1 and enqueue it      q  .  push  (  s1  .  append  (  '2'  ));      count  ++  ;      // check if count==k      if     (  count  ==  k  )      {      cout      < <     s1      < <     endl  ;     // K'th Boom number      break  ;      }      // Append '3' to string s2 and enqueue it.      // Note that s2 contains the previous front      q  .  push  (  s2  .  append  (  '3'  ));      count  ++  ;      // check if count==k      if     (  count  ==  k  )      {      cout      < <     s2      < <     endl  ;     // K'th Boom number      break  ;      }      }      return     ;   }   // Driver program to test above function   int     main  ()   {      ll     k     =     1000000  ;      boomNumber  (  k  );      return     0  ;   }   
Java
   /*package whatever //do not write package name here */      import     java.io.*  ;   import     java.util.*  ;   class   GFG      {      // This function uses queue data structure to K'th      // Boom number      static     void     boomNumber  (  long     k  )      {      // Create an empty queue of strings      Queue   <  String  >     q     =     new     LinkedList   <  String  >  ();      // Enqueue an empty string      q  .  add  (  ''  );      // counter for K'th element      long     count     =     0  ;      // This loop checks the value of count to      // become equal to K when value of count      // will be equals to k we will print the      // Boom number      while     (  count      <=     k  )      {      // current Boom number      String     s1     =     q  .  poll  ();      // Store current Boom number before changing it      String     s2     =     s1  ;      // Append '2' to string s1 and enqueue it      q  .  add  (  s1  +  '2'  );      count  ++  ;      // check if count==k      if     (  count  ==  k  )      {      System  .  out  .  println  (  s1  );     // K'th Boom number      break  ;      }      // Append '3' to string s2 and enqueue it.      // Note that s2 contains the previous front      q  .  add  (  s2  +  '3'  );      count  ++  ;      // check if count==k      if     (  count  ==  k  )      {      System  .  out  .  println  (  s2  );     // K'th Boom number      break  ;      }      }      return     ;      }      // Driver code      public     static     void     main  (  String     args  []  )      {      long     k     =     1000000  ;      boomNumber  (  k  );      }   }   // This code is contributed by shinjanpatra   
Python3
   # Python3 program to find K'th Boom number   # This function uses queue data structure to K'th   # Boom number   def   boomNumber  (  k  ):   # Create an empty queue of strings   q   =   []   # Enqueue an empty string   q  .  append  (  ''  )   # counter for K'th element   count   =   0   # This loop checks the value of count to   # become equal to K when value of count   # will be equals to k we will print the   # Boom number   while   (  count    <=   k  ):   # current Boom number   s1   =   q  [  0  ]   # pop front   q   =   q  [  1  :]   # Store current Boom number before changing it   s2   =   s1   # Append '2' to string s1 and enqueue it   s1   +=   '2'   q  .  append  (  s1  )   count   =   count   +   1   # check if count==k   if   (  count  ==  k  ):   print  (  s1  )   # K'th Boom number   break   # Append '3' to string s2 and enqueue it.   # Note that s2 contains the previous front   s2   +=   '3'   q  .  append  (  s2  )   count   =   count   +   1   # check if count==k   if   (  count  ==  k  ):   print  (  s2  )   # K'th Boom number   break   return   # Driver program to test above function   k   =   1000000   boomNumber  (  k  )   # This code is contributed by shinjanpatra   
C#
   // C# program to find K'th Boom number   using     System  ;   using     System.Collections  ;      class     GFG  {   // This function uses queue data structure   // to K'th Boom number   static     void     boomNumber  (  long     k  )   {          // Create an empty queue of strings      Queue     q     =     new     Queue  ();             // Enqueue an empty string      q  .  Enqueue  (  ''  );          // counter for K'th element      long     count     =     0  ;          // This loop checks the value of count to      // become equal to K when value of count      // will be equals to k we will print the      // Boom number      while     (  count      <=     k  )      {          // current Boom number      string     s1     =     (  string  )  q  .  Dequeue  ();          // Store current Boom number      // before changing it      string     s2     =     s1  ;          // Append '2' to string s1 and      // enqueue it      s1     +=     '2'  ;      q  .  Enqueue  (  s1  );      count  ++  ;          // Check if count==k      if     (  count     ==     k  )      {          // K'th Boom number      Console  .  Write  (  s1  );         break  ;      }          // Append '3' to string s2 and enqueue it.      // Note that s2 contains the previous front      s2     +=     '3'  ;      q  .  Enqueue  (  s2  );      count  ++  ;          // Check if count==k      if     (  count     ==     k  )      {          // K'th Boom number      Console  .  Write  (  s2  );         break  ;      }      }      return  ;   }      // Driver code    public     static     void     Main  (  string     []  arg  )      {      long     k     =     1000000  ;          boomNumber  (  k  );   }   }   // This code is contributed by rutvik_56   
JavaScript
    <  script  >   // JavaScript program to find K'th Boom number   // This function uses queue data structure to K'th   // Boom number   function     boomNumber  (  k  ){      // Create an empty queue of strings      let     q     =     []      // Enqueue an empty string      q  .  push  (  ''  )      // counter for K'th element      let     count     =     0      // This loop checks the value of count to      // become equal to K when value of count      // will be equals to k we will print the      // Boom number      while     (  count      <=     k  ){          // current Boom number      let     s1     =     q  .  shift  ()      // Store current Boom number before changing it      let     s2     =     s1      // Append '2' to string s1 and enqueue it      s1     +=     '2'      q  .  push  (  s1  )      count     =     count     +     1      // check if count==k      if     (  count  ==  k  ){      document  .  write  (  s1    ' 
'
) // K'th Boom number break } // Append '3' to string s2 and enqueue it. // Note that s2 contains the previous front s2 += '3' q . push ( s2 ) count = count + 1 // check if count==k if ( count == k ){ document . write ( s2 '
'
) // K'th Boom number break } } return } // Driver program to test above function let k = 1000000 boomNumber ( k ) // This code is contributed by shinjanpatra < /script>

Ausgabe
3332322223223222223 

Zeitkomplexität: O(K)
Hilfsraum: O(n)

Dieser Artikel wurde vom Team GeeksforGeeks überprüft.