Finden Sie (a^b)%m, wobei „a“ sehr groß ist

Finden Sie (a^b)%m, wobei „a“ sehr groß ist
Probieren Sie es bei GfG Practice aus #practiceLinkDiv { display: none !important; }

Gegeben sind drei Zahlen ein b Und M Wo 1 <=bm <=10^6 Und 'A' kann sehr groß sein und bis zu enthalten 10^6 Ziffern. Die Aufgabe besteht darin, zu finden (a^b)%m .

Beispiele: 

  Input :   a = 3 b = 2 m = 4   Output :   1   Explanation :   (3^2)%4 = 9%4 = 1   Input :   a = 987584345091051645734583954832576 b = 3 m = 11   Output:   10 
Recommended Practice Finden Sie (a^b)%m Probieren Sie es aus!

Dieses Problem basiert im Wesentlichen auf modularer Arithmetik. Wir können schreiben (a^b) % m als (a%m) * (a%m) * (a%m) * ... (a%m) b mal . Nachfolgend finden Sie einen Algorithmus zur Lösung dieses Problems: 

  • Da „a“ sehr groß ist, lesen Sie „a“ als Zeichenfolge.
  • Jetzt versuchen wir, 'a' zu reduzieren. Wir nehmen Modulo von 'a' mal m, d.h. ans = a % m auf diese Weise jetzt ans=a%m liegt zwischen einem ganzzahligen Bereich von 1 bis 10^6, d. h. 1 <= a%m <= 10^6.
  • Jetzt multiplizieren Jahre von b-1 mal und nehmen Sie gleichzeitig den Mod des Zwischenmultiplikationsergebnisses mit m, weil die Zwischenmultiplikation von Jahre kann den Bereich einer Ganzzahl überschreiten und zu einer falschen Antwort führen.
C++
   // C++ program to find (a^b) mod m for a large 'a'   #include       using     namespace     std  ;   // utility function to calculate a%m   unsigned     int     aModM  (  string     s       unsigned     int     mod  )   {      unsigned     int     number     =     0  ;      for     (  unsigned     int     i     =     0  ;     i      <     s  .  length  ();     i  ++  )      {      // (s[i]-'0') gives the digit value and form      // the number      number     =     (  number  *  10     +     (  s  [  i  ]     -     '0'  ));      number     %=     mod  ;      }      return     number  ;   }   // Returns find (a^b) % m   unsigned     int     ApowBmodM  (  string     &  a       unsigned     int     b        unsigned     int     m  )   {      // Find a%m      unsigned     int     ans     =     aModM  (  a       m  );      unsigned     int     mul     =     ans  ;      // now multiply ans by b-1 times and take      // mod with m      for     (  unsigned     int     i  =  1  ;     i   <  b  ;     i  ++  )      ans     =     (  ans  *  mul  )     %     m  ;      return     ans  ;   }   // Driver program to run the case   int     main  ()   {      string     a     =     '987584345091051645734583954832576'  ;      unsigned     int     b  =  3       m  =  11  ;      cout      < <     ApowBmodM  (  a       b       m  );      return     0  ;   }   
Java
   // Java program to find (a^b) mod m for a large 'a'   public     class   GFG     {          // utility function to calculate a%m      static     int     aModM  (  String     s       int     mod  )      {      int     number     =     0  ;      for     (  int     i     =     0  ;     i      <     s  .  length  ();     i  ++  )      {          // (s[i]-'0') gives the digit      // value and form the number      number     =     (  number     *     10     );      int     x     =     Character  .  getNumericValue  (  s  .  charAt  (  i  ));      number     =     number     +     x  ;      number     %=     mod  ;      }          return     number  ;      }      // Returns find (a^b) % m      static     int     ApowBmodM  (  String     a       int     b       int     m  )      {          // Find a%m      int     ans     =     aModM  (  a       m  );      int     mul     =     ans  ;          // now multiply ans by b-1 times       // and take mod with m      for     (  int     i     =     1  ;     i      <     b  ;     i  ++  )      ans     =     (  ans     *     mul  )     %     m  ;          return     ans  ;      }      // Driver code      public     static     void     main  (  String     args  []  )      {      String     a     =     '987584345091051645734583954832576'  ;      int     b     =     3       m     =     11  ;      System  .  out  .  println  (  ApowBmodM  (  a       b       m  ));      }   }   // This code is contributed by Sam007   
Python3
   # Python program to find (a^b) mod m for a large 'a'   def   aModM  (  s     mod  ):   number   =   0   # convert string s[i] to integer which gives   # the digit value and form the number   for   i   in   range  (  len  (  s  )):   number   =   (  number  *  10   +   int  (  s  [  i  ]))   number   =   number   %   m   return   number   # Returns find (a^b) % m   def   ApowBmodM  (  a     b     m  ):   # Find a%m    ans   =   aModM  (  a     m  )   mul   =   ans   # now multiply ans by b-1 times and take   # mod with m   for   i   in   range  (  1    b  ):   ans   =   (  ans  *  mul  )   %   m   return   ans   # Driver program to run the case   a   =   '987584345091051645734583954832576'   b     m   =   3     11   print   (  ApowBmodM  (  a     b     m  ))   
C#
      // C# program to find (a^b) mod m   // for a large 'a'   using     System  ;   class     GFG     {       // utility function to calculate a%m   static     int     aModM  (  string     s       int     mod  )   {      int     number     =     0  ;      for     (  int     i     =     0  ;     i      <     s  .  Length  ;     i  ++  )      {          // (s[i]-'0') gives the digit      // value and form the number      number     =     (  number     *     10     );      int     x     =     (  int  )(  s  [  i  ]     -     '0'  );      number     =     number     +     x  ;      number     %=     mod  ;      }      return     number  ;   }   // Returns find (a^b) % m   static     int     ApowBmodM  (  string     a       int     b           int     m  )   {          // Find a%m      int     ans     =     aModM  (  a       m  );      int     mul     =     ans  ;      // now multiply ans by b-1 times       // and take mod with m      for     (  int     i     =     1  ;     i      <     b  ;     i  ++  )      ans     =     (  ans     *     mul  )     %     m  ;      return     ans  ;   }   // Driver Code   public     static     void     Main  ()   {      string     a     =     '987584345091051645734583954832576'  ;      int     b  =  3       m  =  11  ;      Console  .  Write  (  ApowBmodM  (  a       b       m  ));       }   }   // This code is contributed by Sam007       
PHP
      // PHP program to find (a^b)   // mod m for a large 'a'   // utility function to    // calculate a%m   function   aModM  (  $s     $mod  )   {   $number   =   0  ;   for   (  $i   =   0  ;   $i    <   strlen  (  $s  );   $i  ++  )   {   // (s[i]-'0') gives the digit   // value and form the number   $number   =   (  $number   *   10   +   (  $s  [  $i  ]   -   '0'  ));   $number   %=   $mod  ;   }   return   $number  ;   }   // Returns find (a^b) % m   function   ApowBmodM  (  $a     $b    $m  )   {   // Find a%m   $ans   =   aModM  (  $a     $m  );   $mul   =   $ans  ;   // now multiply ans by    // b-1 times and take   // mod with m   for   (  $i   =   1  ;   $i    <   $b  ;   $i  ++  )   $ans   =   (  $ans   *   $mul  )   %   $m  ;   return   $ans  ;   }   // Driver code   $a   =   '987584345091051645734583954832576'  ;   $b   =   3  ;   $m   =   11  ;   echo   ApowBmodM  (  $a     $b     $m  );   return   0  ;   // This code is contributed by nitin mittal.   ?>   
JavaScript
    <  script  >   // JavaScript program to find (a^b) mod m   // for a large 'a'   // Utility function to calculate a%m   function     aModM  (  s       mod  )   {      let     number     =     0  ;      for  (  let     i     =     0  ;     i      <     s  .  length  ;     i  ++  )      {          // (s[i]-'0') gives the digit      // value and form the number      number     =     (  number     *     10     );      let     x     =     (  s  [  i  ]     -     '0'  );      number     =     number     +     x  ;      number     %=     mod  ;      }      return     number  ;   }       // Returns find (a^b) % m   function     ApowBmodM  (  a       b       m  )   {          // Find a%m      let     ans     =     aModM  (  a       m  );      let     mul     =     ans  ;          // Now multiply ans by b-1 times       // and take mod with m      for  (  let     i     =     1  ;     i      <     b  ;     i  ++  )      ans     =     (  ans     *     mul  )     %     m  ;          return     ans  ;   }       // Driver Code   let     a     =     '987584345091051645734583954832576'  ;   let     b     =     3       m     =     11  ;   document  .  write  (  ApowBmodM  (  a       b       m  ));   // This code is contributed by souravghosh0416    <  /script>   

Ausgabe
10 

Zeitkomplexität: O(nur(a)+b)

Hilfsraum: O(1)

Effizienter Ansatz: Die obigen Multiplikationen können auf reduziert werden log b durch die Verwendung schnelle modulare Potenzierung wobei wir das Ergebnis durch die binäre Darstellung des Exponenten berechnen (B) . Wenn das gesetzte Bit ist 1 Wir multiplizieren den aktuellen Wert der Basis mit dem Ergebnis und quadrieren den Wert der Basis für jeden rekursiven Aufruf.

Rekursiver Code:

C++14
   // C++ program to find (a^b) mod m for a large 'a' with an   // efficient approach.   #include          using     namespace     std  ;   typedef     long     long     ll  ;   // Reduce the number B to a small number   // using Fermat Little   ll     MOD  (  string     num       int     mod  )   {      ll     res     =     0  ;      for     (  int     i     =     0  ;     i      <     num  .  length  ();     i  ++  )      res     =     (  res     *     10     +     num  [  i  ]     -     '0'  )     %     mod  ;      return     res  ;   }   ll     ModExponent  (  ll     a       ll     b       ll     m  )   {      ll     result  ;      if     (  a     ==     0  )      return     0  ;      else     if     (  b     ==     0  )      return     1  ;      else     if     (  b     &     1  )     {      result     =     a     %     m  ;      result     =     result     *     ModExponent  (  a       b     -     1       m  );      }      else     {      result     =     ModExponent  (  a       b     /     2       m  );      result     =     ((  result     *     result  )     %     m     +     m  )     %     m  ;      }      return     (  result     %     m     +     m  )     %     m  ;   }   int     main  ()   {      // String input as b is very large      string     a     =     '987584345091051645734583954832576'  ;      // String input as b is very large      ll     b     =     3  ;      ll     m     =     11  ;      ll     remainderA     =     MOD  (  a       m  );      cout      < <     ModExponent  (  remainderA       b       m  );      return     0  ;   }   
Java
   // Java program to find (a^b) mod m for a large 'a' with an   // efficient approach.   public     class   GFG      {          // Reduce the number B to a small number      // using Fermat Little      static     long     MOD  (  String     num       long     mod  )      {      long     res     =     0  ;      for     (  int     i     =     0  ;     i      <     num  .  length  ();     i  ++  )     {      res     =     (  res     *     10     +     num  .  charAt  (  i  )     -     '0'  )     %     mod  ;      }      return     res  ;      }      // Calculate the ModExponent of the given large number      // 'a'      static     long     ModExponent  (  long     a       long     b       long     m  )      {      long     result  ;      if     (  a     ==     0  )     {      return     0  ;      }      else     if     (  b     ==     0  )     {      return     1  ;      }      else     if     (  b     %     2     !=     0  )     {      result     =     a     %     m  ;      result     =     result     *     ModExponent  (  a       b     -     1       m  );      }      else     {      result     =     ModExponent  (  a       b     /     2       m  );      result     =     ((  result     *     result  )     %     m     +     m  )     %     m  ;      }      return     (  result     %     m     +     m  )     %     m  ;      }      public     static     void     main  (  String  []     args  )      {      // String input as a is very large      String     a     =     '987584345091051645734583954832576'  ;      long     b     =     3  ;      long     m     =     11  ;      long     remainderA     =     MOD  (  a       m  );      System  .  out  .  println  (  ModExponent  (  remainderA       b       m  ));      }   }   // The code is contributed by Gautam goel (gautamgoel962)   
Python3
   # Python3 program to find (a^b) mod m   # for a large 'a'   # Utility function to calculate a%m   def   MOD  (  s     mod  ):   res   =   0   for   i   in   range  (  len  (  s  )):   res   =   (  res   *   10   +   int  (  s  [  i  ]))   %   mod   return   res   # Returns find (a^b) % m   def   ModExponent  (  a     b     m  ):   if   (  a   ==   0  ):   return   0   elif   (  b   ==   0  ):   return   1   elif   (  b   %   2   !=   0  ):   result   =   a   %   m   result   =   result   *   ModExponent  (  a     b   -   1     m  )   else  :   result   =   ModExponent  (  a     b   /   2     m  )   result   =   ((  result   *   result  )   %   m   +   m  )   %   m   return   (  result   %   m   +   m  )   %   m   # Driver Code   a   =   '987584345091051645734583954832576'   b   =   3   m   =   11   remainderA   =   MOD  (  a     m  )   print  (  ModExponent  (  remainderA     b     m  ))   # This code is contributed by phasing17   
C#
   // C# program to find (a^b) mod m for a large 'a' with an   // efficient approach.   using     System  ;   using     System.Collections.Generic  ;   public     class     GFG     {      // Reduce the number B to a small number      // using Fermat Little      static     long     MOD  (  string     num       long     mod  )      {      long     res     =     0  ;      for     (  int     i     =     0  ;     i      <     num  .  Length  ;     i  ++  )     {      res     =     (  res     *     10     +     num  [  i  ]     -     '0'  )     %     mod  ;      }      return     res  ;      }      // Calculate the ModExponent of the given large number      // 'a'      static     long     ModExponent  (  long     a       long     b       long     m  )      {      long     result  ;      if     (  a     ==     0  )     {      return     0  ;      }      else     if     (  b     ==     0  )     {      return     1  ;      }      else     if     (  b     %     2     !=     0  )     {      result     =     a     %     m  ;      result     =     result     *     ModExponent  (  a       b     -     1       m  );      }      else     {      result     =     ModExponent  (  a       b     /     2       m  );      result     =     ((  result     *     result  )     %     m     +     m  )     %     m  ;      }      return     (  result     %     m     +     m  )     %     m  ;      }      // Driver Code      public     static     void     Main  (  string  []     args  )      {      // String input as a is very large      string     a     =     '987584345091051645734583954832576'  ;      long     b     =     3  ;      long     m     =     11  ;      // Function Call      long     remainderA     =     MOD  (  a       m  );      Console  .  WriteLine  (  ModExponent  (  remainderA       b       m  ));      }   }   // The code is contributed by phasing17   
JavaScript
    <  script  >   // JavaScript program to find (a^b) mod m   // for a large 'a'   // Utility function to calculate a%m   function     MOD  (  s       mod  )   {          var     res     =     0  ;      for     (  var     i     =     0  ;     i      <     s  .  length  ;     i  ++  )     {      res     =     (  res     *     10     +     (  s  [  i  ]     -     '0'  ))     %     mod  ;      }      return     res  ;   }   // Returns find (a^b) % m   function     ModExponent  (  a       b       m  )   {          var     result  ;      if     (  a     ==     0  )     {      return     0  ;      }      else     if     (  b     ==     0  )     {      return     1  ;      }      else     if     (  b     %     2     !=     0  )     {      result     =     a     %     m  ;      result     =     result     *     ModExponent  (  a       b     -     1       m  );      }      else     {      result     =     ModExponent  (  a       b     /     2       m  );      result     =     ((  result     *     result  )     %     m     +     m  )     %     m  ;      }      return     (  result     %     m     +     m  )     %     m  ;   }       // Driver Code   let     a     =     '987584345091051645734583954832576'  ;   let     b     =     3       m     =     11  ;   var     remainderA     =     MOD  (  a       m  );   document  .  write  (  ModExponent  (  remainderA       b       m  ));   // This code is contributed by shinjanpatra.    <  /script>   

Ausgabe
10 

Zeitkomplexität: O(len(a)+ log b)

Hilfsraum: O(logb)

Platzsparender iterativer Code:

C++14
   // C++ program to find (a^b) mod m for a large 'a'   #include       using     namespace     std  ;   typedef     long     long     ll  ;   // utility function to calculate a%m and b%m   ll     aModM  (  string     s       ll     mod  )   {      ll     number     =     0  ;      for     (  ll     i     =     0  ;     i      <     s  .  length  ();     i  ++  )      {      // (s[i]-'0') gives the digit value and form      // the number      number     =     (  number  *  10     +     (  s  [  i  ]     -     '0'  ));      number     %=     mod  ;      }      return     number  ;   }   // Returns find (a^b) % m   ll     ApowBmodM  (  ll     x       ll     y    ll     m  )   {      ll     res  =  1  ;      while  (  y  )      {      if  (  y  &  1  )      res  =  (  res  *  x  )  %  m  ;      y  =  y  >>  1  ;      x  =  ((  x  *  x  )  %  m  +  m  )  %  m  ;      }      return     (  res  %  m  +  m  )  %  m  ;   }   // Driver program to run the case   int     main  ()   {      string     a     =     '987584345091051645734583954832576'  ;      ll     b  =  3  ;      ll     m  =  11  ;      // Find a%m      ll     x  =  aModM  (  a    m  );      cout      < <     ApowBmodM  (  x    b    m  );      return     0  ;   }   
Java
   // Java program to find (a^b) mod m for a large 'a'   import     java.util.*  ;   class   GFG     {      // utility function to calculate a%m and b%m      static     long     aModM  (  String     s       long     mod  )      {      long     number     =     0  ;      for     (  int     i     =     0  ;     i      <     s  .  length  ();     i  ++  )     {      // (s[i]-'0') gives the digit value and form      // the number      number     =     (  number     *     10     +     (  s  .  charAt  (  i  )     -     '0'  ));      number     %=     mod  ;      }      return     number  ;      }      // Returns find (a^b) % m      static     long     ApowBmodM  (  long     x       long     y       long     m  )      {      long     res     =     1  ;      while     (  y     >     0  )     {      if     ((  y     &     1  )     !=     0  )      res     =     (  res     *     x  )     %     m  ;      y     =     y     >>     1  ;      x     =     ((  x     *     x  )     %     m     +     m  )     %     m  ;      }      return     (  res     %     m     +     m  )     %     m  ;      }      // Driver program to run the case      public     static     void     main  (  String  []     args  )      {      String     a     =     '987584345091051645734583954832576'  ;      long     b     =     3  ;      long     m     =     11  ;      // Find a%m      long     x     =     aModM  (  a       m  );      System  .  out  .  println  (  ApowBmodM  (  x       b       m  ));      }   }   // This code is contributed by phasing17   
Python3
   # Python3 program to find (a^b) mod m for a large 'a'   # utility function to calculate a%m and b%m   def   aModM  (  s     mod  ):   number   =   0  ;   for   i   in   range  (  len  (  s  )):   # int(s[i]) gives the digit value and form   # the number   number   =   (  number   *   10   +   int  (  s  [  i  ]));   number   %=   mod  ;   return   number  ;   # Returns find (a^b) % m   def   ApowBmodM  (  x     y     m  ):   res   =   1  ;   while   (  y   >   0  ):   if   (  y   &   1  ):   res   =   (  res   *   x  )   %   m  ;   y   =   y   >>   1  ;   x   =   ((  x   *   x  )   %   m   +   m  )   %   m  ;   return   (  res   %   m   +   m  )   %   m  ;   # Driver program to run the case   a   =   '987584345091051645734583954832576'  ;   b   =   3  ;   m   =   11  ;   # Find a%m   x   =   aModM  (  a     m  );   print  (  ApowBmodM  (  x     b     m  ));   # This code is contributed by phasing17   
C#
   // C# program to find (a^b) mod m for a large 'a'   using     System  ;   class     GFG   {      // utility function to calculate a%m and b%m      static     long     aModM  (  string     s       long     mod  )      {      long     number     =     0  ;      for     (  int     i     =     0  ;     i      <     s  .  Length  ;     i  ++  )      {      // (s[i]-'0') gives the digit value and form      // the number      number     =     (  number     *     10     +     (  s  [  i  ]     -     '0'  ));      number     %=     mod  ;      }      return     number  ;      }      // Returns find (a^b) % m      static     long     ApowBmodM  (  long     x       long     y       long     m  )      {      long     res     =     1  ;      while     (  y     >     0  )     {      if     ((  y     &     1  )     !=     0  )      res     =     (  res     *     x  )     %     m  ;      y     =     y     >>     1  ;      x     =     ((  x     *     x  )     %     m     +     m  )     %     m  ;      }      return     (  res     %     m     +     m  )     %     m  ;      }      // Driver program to run the case      public     static     void     Main  (  string  []     args  )      {      string     a     =     '987584345091051645734583954832576'  ;      long     b     =     3  ;      long     m     =     11  ;      // Find a%m      long     x     =     aModM  (  a       m  );      Console  .  WriteLine  (  ApowBmodM  (  x       b       m  ));      }   }   // This code is contributed by phasing17   
JavaScript
   // JavaScript program to find (a^b) mod m for a large 'a'   // utility function to calculate a%m and b%m   function     aModM  (  s       mod  )   {      let     number     =     0  ;      for     (  var     i     =     0  ;     i      <     s  .  length  ;     i  ++  )     {      // parseInt(s[i]) gives the digit value and form      // the number      number     =     (  number     *     10     +     parseInt  (  s  [  i  ]));      number     %=     mod  ;      }      return     number  ;   }   // Returns find (a^b) % m   function     ApowBmodM  (  x       y       m  )   {      let     res     =     1  ;      while     (  y  )     {      if     (  y     &     1  )      res     =     (  res     *     x  )     %     m  ;      y     =     y     >>     1  ;      x     =     ((  x     *     x  )     %     m     +     m  )     %     m  ;      }      return     (  res     %     m     +     m  )     %     m  ;   }   // Driver program to run the case   let     a     =     '987584345091051645734583954832576'  ;   let     b     =     3  ;   let     m     =     11  ;   // Find a%m   let     x     =     aModM  (  a       m  );   console  .  log  (  ApowBmodM  (  x       b       m  ));   // This code is contributed by phasing17   

Ausgabe
10 

Zeitkomplexität: O(len(a)+ log b)

Hilfsraum: O(1)

Fall: Wenn sowohl „a“ als auch „b“ sehr groß sind.

Wir können den gleichen Ansatz auch implementieren, wenn beides der Fall ist 'A' Und 'B' war sehr groß. In diesem Fall hätten wir zuerst genommen gegen davon mit M mit unserem aModM Funktion. Dann geben Sie es an oben weiter ApowBmodM rekursive oder iterative Funktion, um das erforderliche Ergebnis zu erhalten.

Rekursiver Code:

C++14
   #include          using     namespace     std  ;   typedef     long     long     ll  ;   // Reduce the number B to a small number      // using Fermat Little   ll     MOD  (  string     num    int     mod  )   {      ll     res  =  0  ;          for  (  int     i  =  0  ;  i   <  num  .  length  ();  i  ++  )      res  =  (  res  *  10  +  num  [  i  ]  -  '0'  )  %  mod  ;          return     res  ;   }   ll     ModExponent  (  ll     a    ll     b    ll     m  )   {      ll     result  ;      if  (  a  ==  0  )      return     0  ;      else     if  (  b  ==  0  )      return     1  ;      else     if  (  b  &  1  )      {      result  =  a  %  m  ;      result  =  result  *  ModExponent  (  a    b  -1    m  );      }      else  {      result  =  ModExponent  (  a    b  /  2    m  );      result  =  ((  result  %  m  )  *  (  result  %  m  ))  %  m  ;      }      return     (  result  %  m  +  m  )  %  m  ;   }   int     main  ()   {      // String input as b is very large      string     a     =     '987584345091051645734583954832576'  ;      // String input as b is very large      string     b     =     '467687655456765756453454365476765'  ;      ll     m     =     1000000007  ;      ll     remainderA     =     MOD  (  a    m  );      ll     remainderB     =     MOD  (  b    m  );          cout      < <     ModExponent  (  remainderA       remainderB       m  );          return     0  ;   }   
Java
   /*package whatever //do not write package name here */   import     java.io.*  ;   class   GFG     {      // Reduce the number B to a small number      // using Fermat Little.      static     long     MOD  (  String     num    int     mod  )      {      long     res     =     0  ;      for  (  int     i     =     0  ;     i      <     num  .  length  ();     i  ++  )      {      res     =     (  res     *     10     +     num  .  charAt  (  i  )     -     '0'  )     %     mod  ;      }      return     res  ;      }      static     long     ModExponent  (  long     a    long     b    long     m  ){      long     result     =     0  ;      if  (  a     ==     0  )      return     0  ;      else     if  (  b     ==     0  )      return     1  ;      else     if  ((  b  &  1  )     ==     1  ){      result     =     a     %     m  ;      result     =     result  *  ModExponent  (  a       b     -     1       m  );      }      else  {      result     =     ModExponent  (  a       b  /  2       m  );      result     =     ((  result     %     m  )  *  (  result     %     m  ))     %     m  ;      }      return     (  result     %     m     +     m  )     %     m  ;      }      public     static     void     main     (  String  []     args  )     {      // String input as b is very large      String     a     =     '987584345091051645734583954832576'  ;      // String input as b is very large      String     b     =     '467687655456765756453454365476765'  ;      int     m     =     1000000007  ;      long     remainderA     =     MOD  (  a    m  );      long     remainderB     =     MOD  (  b    m  );      System  .  out  .  println  (  ModExponent  (  remainderA       remainderB       m  ));      }   }   // This code is contributed by aadityapburujwale   
Python3
   # Python3 program to implement the approach   # Reduce the number B to a small number   # using Fermat Little   def   MOD  (  num     mod  ):   res   =   0  ;   for   i   in   range  (  len  (  num  )):   res   =   (  res   *   10   +   int  (  num  [  i  ]))   %   mod  ;   return   res  ;   def   ModExponent  (  a     b     m  ):   if   (  a   ==   0  ):   return   0  ;   elif   (  b   ==   0  ):   return   1  ;   elif   (  b   &   1  ):   result   =   a   %   m  ;   result   =   result   *   ModExponent  (  a     b   -   1     m  );   else  :   b   =   b   //   2   result   =   ModExponent  (  a     b     m  );   result   =   ((  result   %   m  )   *   (  result   %   m  ))   %   m  ;   return   (  result   %   m   +   m  )   %   m  ;   # String input as b is very large   a   =   '987584345091051645734583954832576'  ;   # String input as b is very large   b   =   '467687655456765756453454365476765'  ;   m   =   1000000007  ;   remainderA   =   (  MOD  (  a     m  ));   remainderB   =   (  MOD  (  b     m  ));   print  (  ModExponent  (  remainderA     remainderB     m  ));   # This code is contributed by phasing17   
C#
   // C# program to implement the approach   using     System  ;   using     System.Collections.Generic  ;   class     GFG     {      // Reduce the number B to a small number      // using Fermat Little.      static     long     MOD  (  string     num       int     mod  )      {      long     res     =     0  ;      for     (  int     i     =     0  ;     i      <     num  .  Length  ;     i  ++  )     {      res     =     (  res     *     10     +     num  [  i  ]     -     '0'  )     %     mod  ;      }      return     res  ;      }      static     long     ModExponent  (  long     a       long     b       long     m  )      {      long     result     =     0  ;      if     (  a     ==     0  )      return     0  ;      else     if     (  b     ==     0  )      return     1  ;      else     if     ((  b     &     1  )     ==     1  )     {      result     =     a     %     m  ;      result     =     result     *     ModExponent  (  a       b     -     1       m  );      }      else     {      result     =     ModExponent  (  a       b     /     2       m  );      result     =     ((  result     %     m  )     *     (  result     %     m  ))     %     m  ;      }      return     (  result     %     m     +     m  )     %     m  ;      }      public     static     void     Main  (  string  []     args  )      {      // String input as b is very large      string     a     =     '987584345091051645734583954832576'  ;      // String input as b is very large      string     b     =     '467687655456765756453454365476765'  ;      int     m     =     1000000007  ;      long     remainderA     =     MOD  (  a       m  );      long     remainderB     =     MOD  (  b       m  );      Console  .  WriteLine  (      ModExponent  (  remainderA       remainderB       m  ));      }   }   // This code is contributed by phasing17   
JavaScript
   // JavaScript program to implement the approach   // Reduce the number B to a small number   // using Fermat Little   function     MOD  (  num       mod  )   {      let     res     =     0  ;      for     (  var     i     =     0  ;     i      <     num  .  length  ;     i  ++  )      res     =     (  res     *     10     +     parseInt  (  num  [  i  ]))     %     mod  ;      return     res  ;   }   function     ModExponent  (  a       b       m  )   {      let     result  ;      if     (  a     ==     0n  )      return     0n  ;      else     if     (  b     ==     0n  )      return     1n  ;      else     if     (  b     &     1n  )     {      result     =     a     %     m  ;      result     =     result     *     ModExponent  (  a       b     -     1n       m  );      }      else     {      b     =     b     /     2n     -     (  b     %     2n  );      result     =     ModExponent  (  a       b       m  );      result     =     ((  result     %     m  )     *     (  result     %     m  ))     %     m  ;      }      return     (  result     %     m     +     m  )     %     m  ;   }   // String input as b is very large   let     a     =     '987584345091051645734583954832576'  ;   // String input as b is very large   let     b     =     '467687655456765756453454365476765'  ;   let     m     =     1000000007  ;   let     remainderA     =     BigInt  (  MOD  (  a       m  ));   let     remainderB     =     BigInt  (  MOD  (  b       m  ));   console  .  log  (  ModExponent  (  remainderA       remainderB       BigInt  (  m  )));   // This code is contributed by phasing17   

Ausgabe
546081867 

Zeitkomplexität: O(len(a)+len(b)+log b)

Hilfsraum: O(logb)

Platzsparender iterativer Code:

C++14
   // C++ program to find (a^b) mod m for a large 'a'   #include          using     namespace     std  ;   typedef     long     long     ll  ;   // utility function to calculate a%m and b%m   ll     aModM  (  string     s       ll     mod  )   {      ll     number     =     0  ;      for     (  ll     i     =     0  ;     i      <     s  .  length  ();     i  ++  )     {      // (s[i]-'0') gives the digit value and form      // the number      number     =     (  number     *     10     +     (  s  [  i  ]     -     '0'  ));      number     %=     mod  ;      }      return     number  ;   }   // Returns find (a^b) % m   ll     ApowBmodM  (  string  &     a       string  &     b       ll     m  )   {      ll     res     =     1  ;      // Find a%m      ll     x     =     aModM  (  a       m  );      // Find b%m      ll     y     =     aModM  (  b       m  );      while     (  y  )     {      if     (  y     &     1  )      res     =     (  res     *     x  )     %     m  ;      y     =     y     >>     1  ;      x     =     ((  x     %     m  )     *     (  x     %     m  ))     %     m  ;      }      return     (  res     %     m     +     m  )     %     m  ;   }   // Driver program to run the case   int     main  ()   {      string     a     =     '987584345091051645734583954832576'  ;      string     b     =     '467687655456765756453454365476765'  ;      ll     m     =     1000000007  ;      cout      < <     ApowBmodM  (  a       b       m  );      return     0  ;   }   
Java
   /*package whatever //do not write package name here */   import     java.io.*  ;   class   GFG     {      // utility function to calculate a%m and b%m      static     long     aModM  (  String     s       long     mod  ){      long     number     =     0  ;      for     (  int     i     =     0  ;     i      <     s  .  length  ();     i  ++  )      {      // (s.charAt(i)-'0') gives the digit value and form      // the number      number     =     (  number     *     10     +     (  s  .  charAt  (  i  )     -     '0'  ));      number     %=     mod  ;      }      return     number  ;      }      // Returns find (a^b) % m      static     long     ApowBmodM  (  String     a       String     b       long     m  )      {      long     res     =     1  ;      // Find a%m      long     x     =     aModM  (  a       m  );      // Find b%m      long     y     =     aModM  (  b       m  );      while     (  y  >  0  )     {      if     ((  y     &     1  )  ==  1  )      res     =     (  res     *     x  )     %     m  ;      y     =     y     >>     1  ;      x     =     ((  x     %     m  )     *     (  x     %     m  ))     %     m  ;      }      return     (  res     %     m     +     m  )     %     m  ;      }      public     static     void     main     (  String  []     args  )     {      String     a     =     '987584345091051645734583954832576'  ;      String     b     =     '467687655456765756453454365476765'  ;      long     m     =     1000000007  ;      System  .  out  .  println  (  ApowBmodM  (  a       b       m  ));      }   }   // This code is contributed by aadityapburujwale   
Python3
   # Python3 program to find (a^b) mod m for a large 'a'   # utility function to calculate a%m and b%m   def   aModM  (  s     mod  ):   number   =   0   for   i   in   range  (  len  (  s  )):   # (s[i]-'0') gives the digit value and form   # the number   number   =   (  number   *   10   +   (  int  (  s  [  i  ])))   number   %=   mod   return   number   # Returns find (a^b) % m   def   ApowBmodM  (  a     b     m  ):   res   =   1   # Find a%m   x   =   aModM  (  a     m  )   # Find b%m   y   =   aModM  (  b     m  )   while   (  y   >   0  ):   if   (  y   &   1  ):   res   =   (  res   *   x  )   %   m   y   =   y   >>   1   x   =   ((  x   %   m  )   *   (  x   %   m  ))   %   m   return   (  res   %   m   +   m  )   %   m   # Driver program to run the case   a   =   '987584345091051645734583954832576'   b   =   '467687655456765756453454365476765'   m   =   1000000007   print  (  ApowBmodM  (  a     b     m  ))   # This code is contributed by phasing17   
JavaScript
   // JavaScript program to find (a^b) mod m for a large 'a'   // utility function to calculate a%m and b%m   function     aModM  (  s       mod  )   {      let     number     =     0n  ;      for     (  let     i     =     0  ;     i      <     s  .  length  ;     i  ++  )     {      // (s[i]-'0') gives the digit value and form      // the number      number     =     (  number     *     10n     +     BigInt  (  parseInt  (  s  [  i  ])));      number     %=     mod  ;      }      return     number  ;   }   // Returns find (a^b) % m   function     ApowBmodM  (  a       b       m  )   {      let     res     =     1n  ;      // Find a%m      let     x     =     BigInt  (  aModM  (  a       m  ));      // Find b%m      let     y     =     BigInt  (  aModM  (  b       m  ));      while     (  y     >     0n  )     {      if     (  y     &     1n  )      res     =     (  res     *     x  )     %     m  ;      y     =     y     >>     1n  ;      x     =     ((  x     %     m  )     *     (  x     %     m  ))     %     m  ;      }      return     (  res     %     m     +     m  )     %     m  ;   }   // Driver program to run the case   let     a     =     '987584345091051645734583954832576'  ;   let     b     =     '467687655456765756453454365476765'  ;   let     m     =     1000000007n  ;   console  .  log  (  ApowBmodM  (  a       b       m  ));   // This code is contributed by phasing17   
C#
   // C# program to find (a^b) mod m for a large 'a'   using     System  ;   using     System.Collections.Generic  ;   class     GFG     {      // utility function to calculate a%m and b%m      static     long     aModM  (  string     s       long     mod  )      {      long     number     =     0  ;      for     (  int     i     =     0  ;     i      <     s  .  Length  ;     i  ++  )     {      // (s[i]-'0') gives the digit value and form      // the number      number     =     (  number     *     10     +     (  s  [  i  ]     -     '0'  ));      number     %=     mod  ;      }      return     number  ;      }      // Returns find (a^b) % m      static     long     ApowBmodM  (  string     a       string     b       long     m  )      {      long     res     =     1  ;      // Find a%m      long     x     =     aModM  (  a       m  );      // Find b%m      long     y     =     aModM  (  b       m  );      while     (  y     !=     0  )     {      if     ((  y     &     1  )     !=     0  )      res     =     (  res     *     x  )     %     m  ;      y     =     y     >>     1  ;      x     =     ((  x     %     m  )     *     (  x     %     m  ))     %     m  ;      }      return     (  res     %     m     +     m  )     %     m  ;      }      // Driver program to run the case      public     static     void     Main  (  string  []     args  )      {      string     a     =     '987584345091051645734583954832576'  ;      string     b     =     '467687655456765756453454365476765'  ;      long     m     =     1000000007  ;      Console  .  WriteLine  (  ApowBmodM  (  a       b       m  ));      }   }   // This code is contributed by phasing17   

Ausgabe
546081867 

Zeitkomplexität: O(len(a)+len(b)+ log b)

Hilfsraum: O(1)


Wenn Sie möchten GeeksforGeeks und gerne einen Beitrag leisten möchten, können Sie auch einen Artikel darüber schreiben write.geeksforgeeks.org oder senden Sie Ihren Artikel per E-Mail an [email protected].
 

Quiz erstellen