Zählen Sie Möglichkeiten, eine Zahl mit wiederholten Ziffern zu buchstabieren

Zählen Sie Möglichkeiten, eine Zahl mit wiederholten Ziffern zu buchstabieren
Probieren Sie es bei GfG Practice aus #practiceLinkDiv { display: none !important; }

Gegeben sei eine Zeichenfolge, die Ziffern einer Zahl enthält. Die Nummer kann viele gleiche fortlaufende Ziffern enthalten. Die Aufgabe besteht darin, zu zählen, wie sich die Zahl buchstabieren lässt. 
Betrachten Sie zum Beispiel 8884441100, man kann es einfach als Dreifach-Acht, Dreifach-Vier, Doppel-Zwei und Doppel-Null buchstabieren. Man kann es auch als Doppel-Acht-Acht-Vier-Doppel-Vier-Zwei-Zwei-Doppel-Null buchstabieren. 

Beispiele:   

Input : num = 100 Output : 2 The number 100 has only 2 possibilities 1) one zero zero 2) one double zero. Input : num = 11112 Output: 8 1 1 1 1 2 11 1 1 2 1 1 11 2 1 11 1 2 11 11 2 1 111 2 111 1 2 1111 2 Input : num = 8884441100 Output: 64 Input : num = 12345 Output: 1 Input : num = 11111 Output: 16 
Recommended Practice Buchstabiere eine Zahl Probieren Sie es aus!

Dies ist ein einfaches Permutations- und Kombinationsproblem. Nehmen wir den Beispieltestfall aus der Frage 11112. Die Antwort hängt von der Anzahl der möglichen Teilzeichenfolgen von 1111 ab. Die Anzahl der möglichen Teilzeichenfolgen von „1111“ beträgt 2^3 = 8, da es sich um die Anzahl der Kombinationen von 4 – 1 =  3 Trennzeichen „|“ handelt. zwischen zwei Zeichen der Zeichenfolge (Ziffern der durch die Zeichenfolge dargestellten Zahl): '1|1|1|1'. Da unsere Kombinationen davon abhängen, ob wir eine bestimmte 1 wählen, und es für „2“ nur eine Möglichkeit gibt, 2^0 = 1, lautet die Antwort für „11112“ also 8*1 = 8. 

Der Ansatz besteht also darin, die jeweilige fortlaufende Ziffer in der Zeichenfolge zu zählen und 2^(count-1) mit dem vorherigen Ergebnis zu multiplizieren. 

C++
   // C++ program to count number of ways we   // can spell a number   #include       using     namespace     std  ;   typedef     long     long     int     ll  ;   // Function to calculate all possible spells of   // a number with repeated digits   // num --> string which is favourite number   ll     spellsCount  (  string     num  )   {      int     n     =     num  .  length  ();      // final count of total possible spells      ll     result     =     1  ;      // iterate through complete number      for     (  int     i  =  0  ;     i   <  n  ;     i  ++  )      {      // count contiguous frequency of particular      // digit num[i]      int     count     =     1  ;      while     (  i      <     n  -1     &&     num  [  i  +  1  ]     ==     num  [  i  ])      {      count  ++  ;      i  ++  ;      }      // Compute 2^(count-1) and multiply with result       result     =     result     *     pow  (  2       count  -1  );      }      return     result  ;   }   // Driver program to run the case   int     main  ()   {      string     num     =     '11112'  ;      cout      < <     spellsCount  (  num  );      return     0  ;   }   
Java
   // Java program to count number of ways we   // can spell a number   import     java.io.*  ;   class   GFG     {          // Function to calculate all possible       // spells of a number with repeated digits      // num --> string which is favourite number      static     long     spellsCount  (  String     num  )      {          int     n     =     num  .  length  ();      // final count of total possible spells      long     result     =     1  ;      // iterate through complete number      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {          // count contiguous frequency of       // particular digit num[i]      int     count     =     1  ;          while     (  i      <     n     -     1     &&     num  .  charAt  (  i     +     1  )         ==     num  .  charAt  (  i  ))     {          count  ++  ;      i  ++  ;      }      // Compute 2^(count-1) and multiply       // with result      result     =     result     *         (  long  )  Math  .  pow  (  2       count     -     1  );      }      return     result  ;      }      public     static     void     main  (  String  []     args  )      {      String     num     =     '11112'  ;      System  .  out  .  print  (  spellsCount  (  num  ));      }   }   // This code is contributed by Anant Agarwal.   
Python3
   # Python3 program to count number of   # ways we can spell a number   # Function to calculate all possible    # spells of a number with repeated    # digits num --> string which is    # favourite number   def   spellsCount  (  num  ):   n   =   len  (  num  );   # final count of total   # possible spells   result   =   1  ;   # iterate through complete   # number   i   =   0  ;   while  (  i   <  n  ):   # count contiguous frequency    # of particular digit num[i]   count   =   1  ;   while   (  i    <   n   -   1   and   num  [  i   +   1  ]   ==   num  [  i  ]):   count   +=   1  ;   i   +=   1  ;   # Compute 2^(count-1) and   # multiply with result    result   =   result   *   int  (  pow  (  2     count   -   1  ));   i   +=   1  ;   return   result  ;   # Driver Code   num   =   '11112'  ;   print  (  spellsCount  (  num  ));   # This code is contributed   # by mits   
C#
   // C# program to count number of ways we   // can spell a number   using     System  ;   class     GFG     {          // Function to calculate all possible       // spells of a number with repeated       // digits num --> string which is      // favourite number      static     long     spellsCount  (  String     num  )      {          int     n     =     num  .  Length  ;      // final count of total possible      // spells      long     result     =     1  ;      // iterate through complete number      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      {          // count contiguous frequency of       // particular digit num[i]      int     count     =     1  ;          while     (  i      <     n     -     1     &&     num  [  i     +     1  ]         ==     num  [  i  ])      {      count  ++  ;      i  ++  ;      }      // Compute 2^(count-1) and multiply       // with result      result     =     result     *         (  long  )  Math  .  Pow  (  2       count     -     1  );      }          return     result  ;      }      // Driver code      public     static     void     Main  ()      {      String     num     =     '11112'  ;      Console  .  Write  (  spellsCount  (  num  ));      }   }   // This code is contributed by nitin mittal.   
PHP
      // PHP program to count    // number of ways we   // can spell a number   // Function to calculate    // all possible spells of   // a number with repeated    // digits num --> string   // which is favourite number   function   spellsCount  (  $num  )   {   $n   =   strlen  (  $num  );   // final count of total   // possible spells   $result   =   1  ;   // iterate through    // complete number   for   (  $i   =   0  ;   $i    <   $n  ;   $i  ++  )   {   // count contiguous frequency    // of particular digit num[i]   $count   =   1  ;   while   (  $i    <   $n   -   1   &&   $num  [  $i   +   1  ]   ==   $num  [  $i  ])   {   $count  ++  ;   $i  ++  ;   }   // Compute 2^(count-1) and   // multiply with result    $result   =   $result   *   pow  (  2     $count   -   1  );   }   return   $result  ;   }   // Driver Code   $num   =   '11112'  ;   echo   spellsCount  (  $num  );   // This code is contributed   // by nitin mittal.    ?>   
JavaScript
    <  script  >   // Javascript program to count number of    // ways we can spell a number   // Function to calculate all possible    // spells of a number with repeated    // digits num --> string which is   // favourite number   function     spellsCount  (  num  )   {      let     n     =     num  .  length  ;      // Final count of total possible      // spells      let     result     =     1  ;      // Iterate through complete number      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )      {          // Count contiguous frequency of       // particular digit num[i]      let     count     =     1  ;          while     (  i      <     n     -     1     &&         num  [  i     +     1  ]     ==     num  [  i  ])      {      count  ++  ;      i  ++  ;      }      // Compute 2^(count-1) and multiply       // with result      result     =     result     *         Math  .  pow  (  2       count     -     1  );      }      return     result  ;   }       // Driver code   let     num     =     '11112'  ;   document  .  write  (  spellsCount  (  num  ));   // This code is contributed by code_hunt        <  /script>   

Ausgabe
8 

Zeitkomplexität: O(n*log(n))
Hilfsraum: O(1)

Wenn Sie einen anderen Ansatz zur Lösung dieses Problems haben, teilen Sie ihn bitte mit.
 

Quiz erstellen