Binomiale Zufallsvariablen

Binomiale Zufallsvariablen

In diesem Beitrag besprechen wir binomiale Zufallsvariablen.
Voraussetzung: Zufallsvariablen 
Eine bestimmte Art von diskret Zufallsvariable, die zählt, wie oft ein bestimmtes Ereignis in einer festgelegten Anzahl von Versuchen oder Versuchen auftritt. 
Damit eine Variable eine binomiale Zufallsvariable ist, müssen ALLE der folgenden Bedingungen erfüllt sein: 
 

  1. Es gibt eine feste Anzahl von Versuchen (eine feste Stichprobengröße).
  2. Bei jedem Versuch tritt das interessierende Ereignis entweder ein oder nicht.
  3. Die Eintrittswahrscheinlichkeit (oder auch nicht) ist bei jedem Versuch gleich.
  4. Die Prüfungen sind voneinander unabhängig.


Mathematische Notationen 
 

 n = number of trials   
p = probability of success in each trial
k = number of success in n trials


Jetzt versuchen wir die Wahrscheinlichkeit für k Erfolg in n Versuchen herauszufinden.
Hier ist die Erfolgswahrscheinlichkeit in jedem Versuch p, unabhängig von anderen Versuchen. 
Wir wählen also zunächst k Versuche aus, bei denen es einen Erfolg geben wird, und bei den übrigen n-k Versuchen wird es einen Misserfolg geben. Es gibt mehrere Möglichkeiten, dies zu tun 
 

Binomiale Zufallsvariablen


Da alle n Ereignisse unabhängig sind, entspricht die Wahrscheinlichkeit von k Erfolg in n Versuchen der Multiplikation der Wahrscheinlichkeit für jeden Versuch.
Hier sind es k Erfolg und n-k Misserfolge. Die Wahrscheinlichkeit für jeden Weg, k Erfolg und n-k Misserfolg zu erzielen, beträgt also 
 

Binomiale Zufallsvariablen


Daher ist die endgültige Wahrscheinlichkeit 
 

 (number of ways to achieve k success   
and n-k failures)
*
(probability for each way to achieve k
success and n-k failure)


Dann ist die binomiale Zufallsvariablenwahrscheinlichkeit gegeben durch: 
 

Binomiale Zufallsvariablen


Sei X eine binomiale Zufallsvariable mit der Anzahl der Versuche n und der Erfolgswahrscheinlichkeit in jedem Versuch p. 
Die erwartete Erfolgszahl wird durch angegeben 
 

 E[X] = np  


Die Varianz der Erfolgszahl ist gegeben durch 
 

 Var[X] = np(1-p)  


Beispiel 1 : Stellen Sie sich ein Zufallsexperiment vor, bei dem eine voreingenommene Münze (Kopfwahrscheinlichkeit = 1/3) zehnmal geworfen wird. Ermitteln Sie die Wahrscheinlichkeit, dass die Anzahl der erscheinenden Köpfe 5 beträgt.
Lösung : 
 

 Let X be binomial random variable    
with n = 10 and p = 1/3
P(X=5) = ? Binomiale Zufallsvariablen
     Binomiale Zufallsvariablen 
    

Hier ist die Implementierung dafür 
 

C++
   // C++ program to compute Binomial Probability   #include          #include         using     namespace     std  ;   // function to calculate nCr i.e. number of    // ways to choose r out of n objects   int     nCr  (  int     n       int     r  )   {      // Since nCr is same as nC(n-r)      // To decrease number of iterations      if     (  r     >     n     /     2  )      r     =     n     -     r  ;      int     answer     =     1  ;      for     (  int     i     =     1  ;     i      <=     r  ;     i  ++  )     {      answer     *=     (  n     -     r     +     i  );      answer     /=     i  ;      }      return     answer  ;   }   // function to calculate binomial r.v. probability   float     binomialProbability  (  int     n       int     k       float     p  )   {      return     nCr  (  n       k  )     *     pow  (  p       k  )     *      pow  (  1     -     p       n     -     k  );   }   // Driver code   int     main  ()   {      int     n     =     10  ;      int     k     =     5  ;      float     p     =     1.0     /     3  ;      float     probability     =     binomialProbability  (  n       k       p  );      cout      < <     'Probability of '      < <     k  ;      cout      < <     ' heads when a coin is tossed '      < <     n  ;      cout      < <     ' times where probability of each head is '      < <     p      < <     endl  ;      cout      < <     ' is = '      < <     probability      < <     endl  ;   }   
Java
   // Java program to compute Binomial Probability   import     java.util.*  ;   class   GFG   {      // function to calculate nCr i.e. number of       // ways to choose r out of n objects      static     int     nCr  (  int     n       int     r  )      {      // Since nCr is same as nC(n-r)      // To decrease number of iterations      if     (  r     >     n     /     2  )      r     =     n     -     r  ;          int     answer     =     1  ;      for     (  int     i     =     1  ;     i      <=     r  ;     i  ++  )     {      answer     *=     (  n     -     r     +     i  );      answer     /=     i  ;      }          return     answer  ;      }          // function to calculate binomial r.v. probability      static     float     binomialProbability  (  int     n       int     k       float     p  )      {      return     nCr  (  n       k  )     *     (  float  )  Math  .  pow  (  p       k  )     *         (  float  )  Math  .  pow  (  1     -     p       n     -     k  );      }          // Driver code      public     static     void     main  (  String  []     args  )      {      int     n     =     10  ;      int     k     =     5  ;      float     p     =     (  float  )  1.0     /     3  ;          float     probability     =     binomialProbability  (  n       k       p  );          System  .  out  .  print  (  'Probability of '     +  k  );      System  .  out  .  print  (  ' heads when a coin is tossed '     +  n  );      System  .  out  .  println  (  ' times where probability of each head is '     +  p  );      System  .  out  .  println  (     ' is = '     +     probability     );      }   }   /* This code is contributed by Mr. Somesh Awasthi */   
Python3
   # Python3 program to compute Binomial    # Probability   # function to calculate nCr i.e.   # number of ways to choose r out   # of n objects   def   nCr  (  n     r  ):   # Since nCr is same as nC(n-r)   # To decrease number of iterations   if   (  r   >   n   /   2  ):   r   =   n   -   r  ;   answer   =   1  ;   for   i   in   range  (  1     r   +   1  ):   answer   *=   (  n   -   r   +   i  );   answer   /=   i  ;   return   answer  ;   # function to calculate binomial r.v.   # probability   def   binomialProbability  (  n     k     p  ):   return   (  nCr  (  n     k  )   *   pow  (  p     k  )   *   pow  (  1   -   p     n   -   k  ));   # Driver code   n   =   10  ;   k   =   5  ;   p   =   1.0   /   3  ;   probability   =   binomialProbability  (  n     k     p  );   print  (  'Probability of'     k     'heads when a coin is tossed'     end   =   ' '  );   print  (  n     'times where probability of each head is'     round  (  p     6  ));   print  (  'is = '     round  (  probability     6  ));   # This code is contributed by mits   
C#
   // C# program to compute Binomial   // Probability.   using     System  ;   class     GFG     {          // function to calculate nCr      // i.e. number of ways to       // choose r out of n objects      static     int     nCr  (  int     n       int     r  )      {          // Since nCr is same as      // nC(n-r) To decrease       // number of iterations      if     (  r     >     n     /     2  )      r     =     n     -     r  ;          int     answer     =     1  ;      for     (  int     i     =     1  ;     i      <=     r  ;     i  ++  )      {      answer     *=     (  n     -     r     +     i  );      answer     /=     i  ;      }          return     answer  ;      }          // function to calculate binomial      // r.v. probability      static     float     binomialProbability  (      int     n       int     k       float     p  )      {      return     nCr  (  n       k  )     *         (  float  )  Math  .  Pow  (  p       k  )      *     (  float  )  Math  .  Pow  (  1     -     p        n     -     k  );      }          // Driver code      public     static     void     Main  ()      {      int     n     =     10  ;      int     k     =     5  ;      float     p     =     (  float  )  1.0     /     3  ;          float     probability     =         binomialProbability  (  n       k       p  );          Console  .  Write  (  'Probability of '      +     k  );      Console  .  Write  (  ' heads when a coin '      +     'is tossed '     +     n  );      Console  .  Write  (  ' times where '      +     'probability of each head is '      +     p  );      Console  .  Write  (     ' is = '      +     probability     );      }   }   // This code is contributed by nitin mittal.   
JavaScript
    <  script  >   // Javascript program to compute Binomial Probability      // function to calculate nCr i.e. number of       // ways to choose r out of n objects      function     nCr  (  n       r  )      {      // Since nCr is same as nC(n-r)      // To decrease number of iterations      if     (  r     >     n     /     2  )      r     =     n     -     r  ;          let     answer     =     1  ;      for     (  let     i     =     1  ;     i      <=     r  ;     i  ++  )     {      answer     *=     (  n     -     r     +     i  );      answer     /=     i  ;      }          return     answer  ;      }          // function to calculate binomial r.v. probability      function     binomialProbability  (  n       k       p  )      {      return     nCr  (  n       k  )     *     Math  .  pow  (  p       k  )     *         Math  .  pow  (  1     -     p       n     -     k  );      }       // driver program      let     n     =     10  ;      let     k     =     5  ;      let     p     =     1.0     /     3  ;          let     probability     =     binomialProbability  (  n       k       p  );          document  .  write  (  'Probability of '     +  k  );      document  .  write  (  ' heads when a coin is tossed '     +  n  );      document  .  write  (  ' times where probability of each head is '     +  p  );      document  .  write  (     ' is = '     +     probability     );          // This code is contributed by code_hunt.    <  /script>   
PHP
      // php program to compute Binomial    // Probability   // function to calculate nCr i.e.   // number of ways to choose r out   // of n objects   function   nCr  (  $n     $r  )   {   // Since nCr is same as nC(n-r)   // To decrease number of iterations   if   (  $r   >   $n   /   2  )   $r   =   $n   -   $r  ;   $answer   =   1  ;   for   (  $i   =   1  ;   $i    <=   $r  ;   $i  ++  )   {   $answer   *=   (  $n   -   $r   +   $i  );   $answer   /=   $i  ;   }   return   $answer  ;   }   // function to calculate binomial r.v.   // probability   function   binomialProbability  (  $n     $k     $p  )   {   return   nCr  (  $n     $k  )   *   pow  (  $p     $k  )   *   pow  (  1   -   $p     $n   -   $k  );   }   // Driver code   $n   =   10  ;   $k   =   5  ;   $p   =   1.0   /   3  ;   $probability   =   binomialProbability  (  $n     $k     $p  );   echo   'Probability of '   .   $k  ;   echo   ' heads when a coin is tossed '   .   $n  ;   echo   ' times where probability of '   .   'each head is '   .   $p   ;   echo   ' is = '   .   $probability   ;   // This code is contributed by nitin mittal.   ?>   

Ausgabe:  
 

 Probability of 5 heads when a coin is tossed 10 times where probability of each head is 0.333333   
is = 0.136565


 

Quiz erstellen