Det mindste tal, der er deleligt med de første n tal

Det mindste tal, der er deleligt med de første n tal
Prøv det på GfG Practice

Givet et nummer n find det mindste tal ligeligt deleligt med hvert tal 1 til n.
Eksempler:  
 

 Input : n = 4 Output : 12 Explanation : 12 is the smallest numbers divisible by all numbers from 1 to 4 Input : n = 10 Output : 2520 Input : n = 20 Output : 232792560  


Hvis du nøje observerer år skal være LCM af tallene 1 til n
For at finde LCM for tal fra 1 til n - 
 

  1. Initialiser ans = 1. 
     
  2. Iterér over alle tallene fra i = 1 til i = n. 
    Ved den i'te iteration ans = LCM(1 2 …….. i) . Dette kan gøres nemt som LCM(1 2 …. i) = LCM(ans i)
    Så ved første iteration skal vi bare gøre - 
     
 ans = LCM(ans i) = ans * i / gcd(ans i) [Using the below property a*b = gcd(ab) * lcm(ab)]  


Bemærk: I C++ kode overskrider svaret hurtigt heltalsgrænsen selv den lange lange grænse.
Nedenfor er implementeringen af ​​logikken. 
 

C++
   // C++ program to find smallest number evenly divisible by    // all numbers 1 to n   #include       using     namespace     std  ;   // Function returns the lcm of first n numbers   long     long     lcm  (  long     long     n  )   {      long     long     ans     =     1  ;         for     (  long     long     i     =     1  ;     i      <=     n  ;     i  ++  )      ans     =     (  ans     *     i  )  /  (  __gcd  (  ans       i  ));      return     ans  ;   }   // Driver program to test the above function   int     main  ()      {      long     long     n     =     20  ;      cout      < <     lcm  (  n  );      return     0  ;   }   
Java
   // Java program to find the smallest number evenly divisible by    // all numbers 1 to n      class   GFG  {   static     long     gcd  (  long     a       long     b  )   {      if  (  a  %  b     !=     0  )         return     gcd  (  b    a  %  b  );      else         return     b  ;   }   // Function returns the lcm of first n numbers   static     long     lcm  (  long     n  )   {      long     ans     =     1  ;         for     (  long     i     =     1  ;     i      <=     n  ;     i  ++  )      ans     =     (  ans     *     i  )  /  (  gcd  (  ans       i  ));      return     ans  ;   }       // Driver program to test the above function   public     static     void     main  (  String     []  args  )      {      long     n     =     20  ;      System  .  out  .  println  (  lcm  (  n  ));   }   }   
Python
   # Python program to find the smallest number evenly    # divisible by all number 1 to n    import   math   # Returns the lcm of first n numbers    def   lcm  (  n  ):   ans   =   1   for   i   in   range  (  1     n   +   1  ):   ans   =   int  ((  ans   *   i  )  /  math  .  gcd  (  ans     i  ))   return   ans   # main    n   =   20   print   (  lcm  (  n  ))   
C#
   // C# program to find smallest number   // evenly divisible by    // all numbers 1 to n    using     System  ;   public     class     GFG  {      static     long     gcd  (  long     a       long     b  )      {      if  (  a  %  b     !=     0  )         return     gcd  (  b    a  %  b  );      else      return     b  ;      }      // Function returns the lcm of first n numbers    static     long     lcm  (  long     n  )      {         long     ans     =     1  ;         for     (  long     i     =     1  ;     i      <=     n  ;     i  ++  )         ans     =     (  ans     *     i  )  /  (  gcd  (  ans       i  ));         return     ans  ;      }      // Driver program to test the above function       static     public     void     Main     (){      long     n     =     20  ;         Console  .  WriteLine  (  lcm  (  n  ));         }   //This code is contributed by akt_mit    }   
Javascript
   // Javascript program to find the smallest number evenly divisible by    // all numbers 1 to n   function     gcd  (  a       b  )   {      if  (  a  %  b     !=     0  )         return     gcd  (  b    a  %  b  );      else         return     b  ;   }       // Function returns the lcm of first n numbers   function     lcm  (  n  )   {      let     ans     =     1  ;         for     (  let     i     =     1  ;     i      <=     n  ;     i  ++  )      ans     =     (  ans     *     i  )  /  (  gcd  (  ans       i  ));      return     ans  ;   }       // function call          let     n     =     20  ;      console  .  log  (  lcm  (  n  ));       
PHP
      // Note: This code is not working on GFG-IDE    // because gmp libraries are not supported   // PHP program to find smallest number    // evenly divisible by all numbers 1 to n   // Function returns the lcm    // of first n numbers   function   lcm  (  $n  )   {   $ans   =   1  ;   for   (  $i   =   1  ;   $i    <=   $n  ;   $i  ++  )   $ans   =   (  $ans   *   $i  )   /   (  gmp_gcd  (  strval  (  ans  )   strval  (  i  )));   return   $ans  ;   }   // Driver Code   $n   =   20  ;   echo   lcm  (  $n  );   // This code is contributed by mits   ?>   

Produktion
232792560 

Tidskompleksitet: O(n log2n) da kompleksiteten af ​​_gcd(ab) i c++ er log2n  og det kører n gange i en løkke.
Hjælpeplads: O(1)
Ovenstående løsning fungerer fint for et enkelt input. Men hvis vi har flere input, er det en god idé at bruge Sieve of Eratosthenes til at gemme alle prime faktorer. Se venligst nedenstående artikel for Sieve-baseret tilgang. 

Fremgangsmåde: [Brug af Sigte af Eratosthenes ]

For at løse problemet med at finde det mindste tal, der er deleligt med de første 'n' tal på en mere effektiv måde, kan vi bruge Eratosthenes Sieve til at forudberegne primtallene op til 'n'. Så kan vi bruge disse primtal til at beregne det mindste fælles multiplum (LCM) mere effektivt ved at overveje de højeste potenser af hvert primtal, der er mindre end eller lig med 'n'.

Trin-for-trin tilgang:

  • Generer primtal op til n: Brug Eratosthenes sigte til at finde alle primtal op til 'n'.
  • Beregn LCM ved hjælp af disse primtal: Bestem for hvert primtal den højeste potens af det primtal, som er mindre end eller lig med 'n'. Multiplicer disse højeste potenser sammen for at få LCM

Nedenfor er implementeringen af ​​ovenstående tilgang:

C++
   #include         #include          #include         using     namespace     std  ;   // Function to generate all prime numbers up to n using the   // Sieve of Eratosthenes   vector   <  int  >     sieve_of_eratosthenes  (  int     n  )   {      vector   <  bool  >     is_prime  (  n     +     1       true  );      int     p     =     2  ;      while     (  p     *     p      <=     n  )     {      if     (  is_prime  [  p  ])     {      for     (  int     i     =     p     *     p  ;     i      <=     n  ;     i     +=     p  )     {      is_prime  [  i  ]     =     false  ;      }      }      ++  p  ;      }      vector   <  int  >     prime_numbers  ;      for     (  int     p     =     2  ;     p      <=     n  ;     ++  p  )     {      if     (  is_prime  [  p  ])     {      prime_numbers  .  push_back  (  p  );      }      }      return     prime_numbers  ;   }   // Function to find the smallest number divisible by all   // numbers from 1 to n   long     long     smallest_multiple  (  int     n  )   {      vector   <  int  >     primes     =     sieve_of_eratosthenes  (  n  );      long     long     lcm     =     1  ;      for     (  int     prime     :     primes  )     {      // Calculate the highest power of the prime that is      //  <= n      int     power     =     1  ;      while     (  pow  (  prime       power     +     1  )      <=     n  )     {      ++  power  ;      }      lcm     *=     pow  (  prime       power  );      }      return     lcm  ;   }   int     main  ()   {      int     n     =     20  ;      cout      < <     smallest_multiple  (  n  )      < <  endl  ;      return     0  ;   }   
Java
   import     java.util.ArrayList  ;   import     java.util.List  ;   public     class   SmallestMultiple     {      // Function to generate all prime numbers up to n using      // the Sieve of Eratosthenes      public     static     List   <  Integer  >     sieveOfEratosthenes  (  int     n  )      {      boolean  []     isPrime     =     new     boolean  [  n     +     1  ]  ;      for     (  int     i     =     0  ;     i      <=     n  ;     i  ++  )     {      isPrime  [  i  ]     =     true  ;      }      int     p     =     2  ;      while     (  p     *     p      <=     n  )     {      if     (  isPrime  [  p  ]  )     {      for     (  int     i     =     p     *     p  ;     i      <=     n  ;     i     +=     p  )     {      isPrime  [  i  ]     =     false  ;      }      }      p  ++  ;      }      List   <  Integer  >     primeNumbers     =     new     ArrayList   <>  ();      for     (  int     i     =     2  ;     i      <=     n  ;     i  ++  )     {      if     (  isPrime  [  i  ]  )     {      primeNumbers  .  add  (  i  );      }      }      return     primeNumbers  ;      }      // Function to find the smallest number divisible by all      // numbers from 1 to n      public     static     long     smallestMultiple  (  int     n  )      {      List   <  Integer  >     primes     =     sieveOfEratosthenes  (  n  );      long     lcm     =     1  ;      for     (  int     prime     :     primes  )     {      // Calculate the highest power of the prime that      // is  <= n      int     power     =     1  ;      while     (  Math  .  pow  (  prime       power     +     1  )      <=     n  )     {      power  ++  ;      }      lcm     *=     Math  .  pow  (  prime       power  );      }      return     lcm  ;      }      public     static     void     main  (  String  []     args  )      {      int     n     =     20  ;      System  .  out  .  println  (  smallestMultiple  (  n  ));      }   }   
Python
   import   math   def   sieve_of_eratosthenes  (  n  ):      '''Generate all prime numbers up to n.'''   is_prime   =   [  True  ]   *   (  n   +   1  )   p   =   2   while   (  p   *   p    <=   n  ):   if   (  is_prime  [  p  ]   ==   True  ):   for   i   in   range  (  p   *   p     n   +   1     p  ):   is_prime  [  i  ]   =   False   p   +=   1   prime_numbers   =   [  p   for   p   in   range  (  2     n   +   1  )   if   is_prime  [  p  ]]   return   prime_numbers   def   smallest_multiple  (  n  ):      '''Find the smallest number divisible by all numbers from 1 to n.'''   primes   =   sieve_of_eratosthenes  (  n  )   lcm   =   1   for   prime   in   primes  :   # Calculate the highest power of the prime that is  <= n   power   =   1   while   prime   **   (  power   +   1  )    <=   n  :   power   +=   1   lcm   *=   prime   **   power   return   lcm   # Example usage:   n   =   20   print  (  smallest_multiple  (  n  ))   
JavaScript
   // Function to generate all prime numbers up to n using the   // Sieve of Eratosthenes   function     sieveOfEratosthenes  (  n  )   {      let     isPrime     =     new     Array  (  n     +     1  ).  fill  (  true  );      let     p     =     2  ;      while     (  p     *     p      <=     n  )     {      if     (  isPrime  [  p  ])     {      for     (  let     i     =     p     *     p  ;     i      <=     n  ;     i     +=     p  )     {      isPrime  [  i  ]     =     false  ;      }      }      p  ++  ;      }      let     primeNumbers     =     [];      for     (  let     p     =     2  ;     p      <=     n  ;     p  ++  )     {      if     (  isPrime  [  p  ])     {      primeNumbers  .  push  (  p  );      }      }      return     primeNumbers  ;   }   // Function to find the smallest number divisible by all   // numbers from 1 to n   function     smallestMultiple  (  n  )   {      let     primes     =     sieveOfEratosthenes  (  n  );      let     lcm     =     1  ;      for     (  let     prime     of     primes  )     {      // Calculate the highest power of the prime that is      //  <= n      let     power     =     1  ;      while     (  Math  .  pow  (  prime       power     +     1  )      <=     n  )     {      power  ++  ;      }      lcm     *=     Math  .  pow  (  prime       power  );      }      return     lcm  ;   }   // Example usage:   let     n     =     20  ;   console  .  log  (  smallestMultiple  (  n  ));   

Produktion
The smallest number divisible by all numbers from 1 to 20 is 232792560  

Tidskompleksitet: O(nlogn)
Hjælpeplads: På)


Opret quiz