Udskriv alle underordnede med 0 sum

Udskriv alle underordnede med 0 sum
Prøv det på GFG -praksis

Givet en matrix arr [] af størrelse n Opgaven er at udskrive alle underordnede i matrixen, der har summen .

Eksempler:  

Input: ARR = [6 3 -1 -3 4 -2 2 4 6 -12 -7]
Produktion:

Subarray fundet fra indeks 2 til 4
Subarray fundet fra indeks 2 til 6
Subarray fundet fra indeks 5 til 6
Subarray fundet fra indeks 6 til 9
Subarray fundet fra indeks 0 til 10

Input: ARR = [1 2 -3 3 -1 -1]
Produktion:

Subarray fundet fra indeks 0 til 2
Subarray fundet fra indeks 2 til 3
Subarray fundet fra indeks 3 til 5

[Naiv tilgang] Ved at generere alle mulige undergray - O (n 2 ) tid og o (1) hjælpeplads

Den meget basale tilgang er at overveje Alle mulige underordnede og kontrollerer, om deres sum er nul. Selvom denne tilgang er enkel, men ineffektiv også for store arrays.

C++
   // C++ program to print all subarrays   // in the array which has sum 0   #include          using     namespace     std  ;   vector   <  pair   <  int       int  >     >     findSubArrays  (  int     arr  []     int     n  )   {      // Array to store all the start and end      // indices of subarrays with 0 sum      vector   <  pair   <  int       int  >     >     output  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      int     prefix     =     0  ;      for     (  int     j     =     i  ;     j      <     n  ;     j  ++  )     {      prefix     +=     arr  [  j  ];      if     (  prefix     ==     0  )      output  .  push_back  ({     i       j     });      }      }      return     output  ;   }   // Function to print all subarrays with 0 sum   void     print  (  vector   <  pair   <  int       int  >     >     output  )   {      for     (  auto     it     =     output  .  begin  ();     it     !=     output  .  end  ();     it  ++  )      cout      < <     'Subarray found from Index '      < <     it  ->  first       < <     ' to '      < <     it  ->  second      < <     endl  ;   }   // Driver code   int     main  ()   {      // Given array      int     arr  []     =     {     6       3       -1       -3       4       -2       2       4       6       -12       -7     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      // Function Call      vector   <  pair   <  int       int  >     >     output     =     findSubArrays  (  arr       n  );      // if we didn’t find any subarray with 0 sum      // then subarray doesn’t exists      if     (  output  .  size  ()     ==     0  )     {      cout      < <     'No subarray exists'  ;      }      else     {      print  (  output  );      }      return     0  ;   }   
Java
   // Java program to print all subarrays   // in the array which has sum 0   import     java.io.*  ;   import     java.util.*  ;   // User defined pair class   class   Pair     {      int     first       second  ;      Pair  (  int     a       int     b  )      {      first     =     a  ;      second     =     b  ;      }   }   public     class   GFG     {      static     ArrayList   <  Pair  >     findSubArrays  (  int  []     arr       int     n  )      {      // Array to store all the start and end      // indices of subarrays with 0 sum      ArrayList   <  Pair  >     out     =     new     ArrayList   <>  ();      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      int     prefix     =     0  ;      for     (  int     j     =     i  ;     j      <     n  ;     j  ++  )     {      prefix     +=     arr  [  j  ]  ;      if     (  prefix     ==     0  )      out  .  add  (  new     Pair  (  i       j  ));      }      }      return     out  ;      }      // Function to print all subarrays with 0 sum      static     void     print  (  ArrayList   <  Pair  >     out  )      {      for     (  int     i     =     0  ;     i      <     out  .  size  ();     i  ++  )     {      Pair     p     =     out  .  get  (  i  );      System  .  out  .  println  (  'Subarray found from Index '      +     p  .  first     +     ' to '      +     p  .  second  );      }      }      // Driver code      public     static     void     main  (  String     args  []  )      {      // Given array      int  []     arr      =     {     6       3       -  1       -  3       4       -  2       2       4       6       -  12       -  7     };      int     n     =     arr  .  length  ;      // Function Call      ArrayList   <  Pair  >     out     =     findSubArrays  (  arr       n  );      // if we didn’t find any subarray with 0 sum      // then subarray doesn’t exists      if     (  out  .  size  ()     ==     0  )      System  .  out  .  println  (  'No subarray exists'  );      else      print  (  out  );      }   }   
Python
   # User defined pair class   class   Pair  :   first   =   0   second   =   0   def   __init__  (  self     a     b  ):   self  .  first   =   a   self  .  second   =   b   class   GFG  :   @staticmethod   def   findSubArrays  (  arr     n  ):   # Array to store all the start and end   # indices of subarrays with 0 sum   out   =   []   i   =   0   while   (  i    <   n  ):   prefix   =   0   j   =   i   while   (  j    <   n  ):   prefix   +=   arr  [  j  ]   if   (  prefix   ==   0  ):   out  .  append  (  Pair  (  i     j  ))   j   +=   1   i   +=   1   return   out   # Function to print all subarrays with 0 sum   @staticmethod   def   print  (  out  ):   i   =   0   while   (  i    <   len  (  out  )):   p   =   out  [  i  ]   print  (  'Subarray found from Index '   +   str  (  p  .  first  )   +   ' to '   +   str  (  p  .  second  ))   i   +=   1   # Driver code   @staticmethod   def   main  (  args  ):   # Given array   arr   =   [  6     3     -  1     -  3     4     -  2     2     4     6     -  12     -  7  ]   n   =   len  (  arr  )   # Function Call   out   =   GFG  .  findSubArrays  (  arr     n  )   # if we didn't find any subarray with 0 sum   # then subarray doesn't exists   if   (  len  (  out  )   ==   0  ):   print  (  'No subarray exists'  )   else  :   GFG  .  print  (  out  )   if   __name__   ==   '__main__'  :   GFG  .  main  ([])   
C#
   using     System  ;   using     System.Collections.Generic  ;   class     GFG   {          // Array to store all the start and end      // indices of subarrays with 0 sum      static     List   <  Tuple   <  int       int  >>     findSubArrays  (  int  []     arr       int     n  )      {      var     output     =     new     List   <  Tuple   <  int       int  >>  ();      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      {      int     prefix     =     0  ;      for     (  int     j     =     i  ;     j      <     n  ;     j  ++  )      {      prefix     +=     arr  [  j  ];      if     (  prefix     ==     0  )      output  .  Add  (  Tuple  .  Create  (  i       j  ));      }      }      return     output  ;      }      // Function to print all subarrays with 0 sum      static     void     print  (  List   <  Tuple   <  int       int  >>     output  )      {      foreach     (  var     subArray     in     output  )      Console  .  Write  (  'Subarray found from Index '     +     subArray  .  Item1     +     ' to '     +     subArray  .  Item2  +  'n'  );      }      // Driver code      public     static     void     Main  ()      {      // Given array      int  []     arr     =     {     6       3       -  1       -  3       4       -  2       2       4       6       -  12       -  7     };      int     n     =     arr  .  Length  ;      // Function Call      List   <  Tuple   <  int       int  >>     output     =     findSubArrays  (  arr       n  );      // if we didn’t find any subarray with 0 sum      // then subarray doesn’t exists      if     (  output  .  Count     ==     0  )      {      Console  .  WriteLine  (  'No subarray exists'  );      }      else      {      print  (  output  );      }      }   }   
JavaScript
   // Javascript program to print all subarrays   // in the array which has sum 0   function     findSubArrays  (  arr       n  )   {      // Array to store all the start and end      // indices of subarrays with 0 sum      let     out     =  [];      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      let     prefix     =     0  ;      for     (  let     j     =     i  ;     j      <     n  ;     j  ++  )     {      prefix     +=     arr  [  j  ];      if     (  prefix     ==     0  )      out  .  push  ([  i       j  ]);      }      }      return     out  ;   }   // Function to print all subarrays with 0 sum   function     print  (  out  )   {      for     (  let     it     of     out  )      console  .  log  (  'Subarray found from Index '     +     it  [  0  ]      +     ' to '     +     it  [  1  ]);   }   // Driver code   // Given array   let     arr     =     [     6       3       -  1       -  3       4       -  2       2       4       6       -  12       -  7     ];   let     n     =     arr  .  length     ;   // Function Call   let     out     =     findSubArrays  (  arr       n  );   // if we didn’t find any subarray with 0 sum   // then subarray doesn’t exists   if     (  out  .  length     ==     0  )     {      console  .  log  (  'No subarray exists'  );   }   else     {      print  (  out  );   }       

Produktion
Subarray found from Index 0 to 10 Subarray found from Index 2 to 4 Subarray found from Index 2 to 6 Subarray found from Index 5 to 6 Subarray found from Index 6 to 9  

Tidskompleksitet: 2 ) Da vi bruger 2 sløjfer.
Hjælprum: O (1) som konstant ekstra plads er påkrævet.

[Forventet tilgang] Brug Hashing - o (n) tid og o (n) hjælpeplads

En mere effektiv tilgang er at bruge hashing til at opbevare den kumulative sum af elementer og deres indekser. Dette giver mulighed for at kontrollere, om der findes en underordning med nul sum i konstant tid.

Nedenfor er detaljerede trin i intuition:

  1. Opret et hash -kort til opbevaring af den kumulative sum og tilsvarende indekser.
  2. Initialiser den kumulative sum til nul.
  3. Traverse arrayet:
    • Tilføj det aktuelle element til det kumulative sum.
    • Hvis den kumulative sum er nul, findes der en undergrad fra begyndelsen til det nuværende indeks.
    • Hvis den kumulative sum allerede er til stede på hash -kortet, betyder det, at der er en underarray med nul sum.
    • Opbevar den kumulative sum og indeks på hashkortet.
C++
   // C++ program to print all subarrays   // in the array which has sum 0   #include          using     namespace     std  ;   // Function to print all subarrays in the array which   // has sum 0   vector   <  pair   <  int       int  >     >     findSubArrays  (  int     arr  []     int     n  )   {      // create an empty map      unordered_map   <  int       vector   <  int  >     >     map  ;      // create an empty vector of pairs to store      // subarray starting and ending index      vector   <  pair   <  int       int  >     >     out  ;      // Maintains sum of elements so far      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // add current element to sum      sum     +=     arr  [  i  ];      // if sum is 0 we found a subarray starting      // from index 0 and ending at index i      if     (  sum     ==     0  )      out  .  push_back  (  make_pair  (  0       i  ));      // If sum already exists in the map there exists      // at-least one subarray ending at index i with      // 0 sum      if     (  map  .  find  (  sum  )     !=     map  .  end  ())     {      // map[sum] stores starting index of all      // subarrays      vector   <  int  >     vc     =     map  [  sum  ];      for     (  auto     it     =     vc  .  begin  ();     it     !=     vc  .  end  ();     it  ++  )      out  .  push_back  (  make_pair  (  *  it     +     1       i  ));      }      // Important - no else      map  [  sum  ].  push_back  (  i  );      }      // return output vector      return     out  ;   }   // Utility function to print all subarrays with sum 0   void     print  (  vector   <  pair   <  int       int  >     >     out  )   {      for     (  auto     it     =     out  .  begin  ();     it     !=     out  .  end  ();     it  ++  )      cout      < <     'Subarray found from Index '      < <     it  ->  first       < <     ' to '      < <     it  ->  second      < <     endl  ;   }   // Driver code   int     main  ()   {      int     arr  []     =     {     6       3       -1       -3       4       -2       2       4       6       -12       -7     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      vector   <  pair   <  int       int  >     >     out     =     findSubArrays  (  arr       n  );      // if we didn’t find any subarray with 0 sum      // then subarray doesn’t exists      if     (  out  .  size  ()     ==     0  )      cout      < <     'No subarray exists'  ;      else      print  (  out  );      return     0  ;   }   
Java
   // Java program to print all subarrays   // in the array which has sum 0   import     java.io.*  ;   import     java.util.*  ;   // User defined pair class   class   Pair     {      int     first       second  ;      Pair  (  int     a       int     b  )      {      first     =     a  ;      second     =     b  ;      }   }   public     class   GFG     {      // Function to print all subarrays in the array which      // has sum 0      static     ArrayList   <  Pair  >     findSubArrays  (  int  []     arr       int     n  )      {      // create an empty map      HashMap   <  Integer       ArrayList   <  Integer  >     >     map      =     new     HashMap   <>  ();      // create an empty vector of pairs to store      // subarray starting and ending index      ArrayList   <  Pair  >     out     =     new     ArrayList   <>  ();      // Maintains sum of elements so far      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // add current element to sum      sum     +=     arr  [  i  ]  ;      // if sum is 0 we found a subarray starting      // from index 0 and ending at index i      if     (  sum     ==     0  )      out  .  add  (  new     Pair  (  0       i  ));      ArrayList   <  Integer  >     al     =     new     ArrayList   <>  ();      // If sum already exists in the map there exists      // at-least one subarray ending at index i with      // 0 sum      if     (  map  .  containsKey  (  sum  ))     {      // map[sum] stores starting index of all      // subarrays      al     =     map  .  get  (  sum  );      for     (  int     it     =     0  ;     it      <     al  .  size  ();     it  ++  )     {      out  .  add  (  new     Pair  (  al  .  get  (  it  )     +     1       i  ));      }      }      al  .  add  (  i  );      map  .  put  (  sum       al  );      }      return     out  ;      }      // Utility function to print all subarrays with sum 0      static     void     print  (  ArrayList   <  Pair  >     out  )      {      for     (  int     i     =     0  ;     i      <     out  .  size  ();     i  ++  )     {      Pair     p     =     out  .  get  (  i  );      System  .  out  .  println  (  'Subarray found from Index '      +     p  .  first     +     ' to '      +     p  .  second  );      }      }      // Driver code      public     static     void     main  (  String     args  []  )      {      int  []     arr      =     {     6       3       -  1       -  3       4       -  2       2       4       6       -  12       -  7     };      int     n     =     arr  .  length  ;      ArrayList   <  Pair  >     out     =     findSubArrays  (  arr       n  );      // if we did not find any subarray with 0 sum      // then subarray does not exists      if     (  out  .  size  ()     ==     0  )      System  .  out  .  println  (  'No subarray exists'  );      else      print  (  out  );      }   }   
Python
   # Python3 program to print all subarrays   # in the array which has sum 0   # Function to get all subarrays   # in the array which has sum 0   def   findSubArrays  (  arr     n  ):   # create a python dict   hashMap   =   {}   # create a python list   # equivalent to ArrayList   out   =   []   # tracker for sum of elements   sum1   =   0   for   i   in   range  (  n  ):   # increment sum by element of array   sum1   +=   arr  [  i  ]   # if sum is 0 we found a subarray starting   # from index 0 and ending at index i   if   sum1   ==   0  :   out  .  append  ((  0     i  ))   al   =   []   # If sum already exists in the map   # there exists at-least one subarray   # ending at index i with 0 sum   if   sum1   in   hashMap  :   # map[sum] stores starting index   # of all subarrays   al   =   hashMap  .  get  (  sum1  )   for   it   in   range  (  len  (  al  )):   out  .  append  ((  al  [  it  ]   +   1     i  ))   al  .  append  (  i  )   hashMap  [  sum1  ]   =   al   return   out   # Utility function to print   # all subarrays with sum 0   def   printOutput  (  output  ):   for   i   in   output  :   print  (  'Subarray found from Index '   +   str  (  i  [  0  ])   +   ' to '   +   str  (  i  [  1  ]))   # Driver Code   if   __name__   ==   '__main__'  :   arr   =   [  6     3     -  1     -  3     4     -  2     2     4     6     -  12     -  7  ]   n   =   len  (  arr  )   out   =   findSubArrays  (  arr     n  )   # if we did not find any subarray with 0 sum   # then subarray does not exists   if   (  len  (  out  )   ==   0  ):   print  (  'No subarray exists'  )   else  :   printOutput  (  out  )   
C#
   // C# program to print all subarrays   // in the array which has sum 0   using     System  ;   using     System.Collections.Generic  ;   // User defined pair class   class     Pair     {      public     int     first       second  ;      public     Pair  (  int     a       int     b  )      {      first     =     a  ;      second     =     b  ;      }   }   class     GFG     {      // Function to print all subarrays      // in the array which has sum 0      static     List   <  Pair  >     findSubArrays  (  int  []     arr       int     n  )      {      // create an empty map      Dictionary   <  int       List   <  int  >     >     map      =     new     Dictionary   <  int       List   <  int  >     >  ();      // create an empty vector of pairs to store      // subarray starting and ending index      List   <  Pair  >     outt     =     new     List   <  Pair  >  ();      // Maintains sum of elements so far      int     sum     =     0  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // add current element to sum      sum     +=     arr  [  i  ];      // if sum is 0 we found a subarray starting      // from index 0 and ending at index i      if     (  sum     ==     0  )      outt  .  Add  (  new     Pair  (  0       i  ));      List   <  int  >     al     =     new     List   <  int  >  ();      // If sum already exists in the map there exists      // at-least one subarray ending at index i with      // 0 sum      if     (  map  .  ContainsKey  (  sum  ))     {      // map[sum] stores starting index      // of all subarrays      al     =     map  [  sum  ];      for     (  int     it     =     0  ;     it      <     al  .  Count  ;     it  ++  )     {      outt  .  Add  (  new     Pair  (  al  [  it  ]     +     1       i  ));      }      }      al  .  Add  (  i  );      if     (  map  .  ContainsKey  (  sum  ))      map  [  sum  ]     =     al  ;      else      map  .  Add  (  sum       al  );      }      return     outt  ;      }      // Utility function to print all subarrays with sum 0      static     void     print  (  List   <  Pair  >     outt  )      {      for     (  int     i     =     0  ;     i      <     outt  .  Count  ;     i  ++  )     {      Pair     p     =     outt  [  i  ];      Console  .  WriteLine  (  'Subarray found from Index '      +     p  .  first     +     ' to '      +     p  .  second  );      }      }      // Driver code      public     static     void     Main  (  String  []     args  )      {      int  []     arr      =     {     6       3       -  1       -  3       4       -  2       2       4       6       -  12       -  7     };      int     n     =     arr  .  Length  ;      List   <  Pair  >     outt     =     findSubArrays  (  arr       n  );      // if we did not find any subarray with 0 sum      // then subarray does not exists      if     (  outt  .  Count     ==     0  )      Console  .  WriteLine  (  'No subarray exists'  );      else      print  (  outt  );      }   }   
JavaScript
   // JavaScript program to print all subarrays   // in the array which has sum 0   // Function to print all subarrays in the array which   // has sum 0   function     findSubArrays  (  arr       n  )   {      // create an empty map      let     map     =     {};          // create an empty vector of pairs to store      // subarray starting and ending index      let     out     =     [];          // Maintains sum of elements so far      let     sum     =     0  ;          for     (  var     i     =     0  ;     i      <     n  ;     i  ++  )      {      // add current element to sum      sum     +=     arr  [  i  ];          // if sum is 0 we found a subarray starting      // from index 0 and ending at index i      if     (  sum     ==     0  )      out  .  push  ([  0       i  ]);          // If sum already exists in the map there exists      // at-least one subarray ending at index i with      // 0 sum      if     (  map  .  hasOwnProperty  (  sum  ))      {      // map[sum] stores starting index of all subarrays      let     vc     =     map  [  sum  ];      for     (  let     it     of     vc  )      out  .  push  ([  it     +     1       i  ]);      }      else      map  [  sum  ]     =     [];          // Important - no else      map  [  sum  ].  push  (  i  );      }          // return output vector      return     out  ;   }       // Utility function to print all subarrays with sum 0   function     print  (  out  )   {      for     (  let     it     of     out  )      console  .  log  (  'Subarray found from Index '     +     it  [  0  ]     +     ' to '     +     it  [  1  ]);   }           // Driver code   let     arr     =     [  6       3       -  1       -  3       4       -  2       2       4       6       -  12       -  7  ];   let     n     =     arr  .  length  ;       let     out     =     findSubArrays  (  arr       n  );       // if we didn’t find any subarray with 0 sum   // then subarray doesn’t exists   if     (  out  .  length     ==     0  )      console  .  log  (  'No subarray exists'  );   else      print  (  out  );   

Produktion
Subarray found from Index 2 to 4 Subarray found from Index 2 to 6 Subarray found from Index 5 to 6 Subarray found from Index 6 to 9 Subarray found from Index 0 to 10  

Tidskompleksitet: O (n) hvor n er antallet af elementer i matrixen.
Hjælprum: O (n) Til opbevaring af hash -kortet.