Implementering af Affine Cipher

Implementering af Affine Cipher

Den Affine-chiffer er en type monoalfabetisk substitutionsciffer, hvor hvert bogstav i et alfabet er afbildet til dets numeriske ækvivalent krypteret ved hjælp af en simpel matematisk funktion og konverteret tilbage til et bogstav. Den anvendte formel betyder, at hvert bogstav krypterer til et andet bogstav og tilbage igen, hvilket betyder, at chifferen i det væsentlige er en standard substitutionsciffer med en regel, der styrer, hvilket bogstav der går til hvilket. 
Hele processen er afhængig af at arbejde modulo m (længden af ​​det anvendte alfabet). I den affine chiffer afbildes bogstaverne i et alfabet af størrelse m først til heltal i området 0 … m-1. 

'Nøglen' til Affine-chifferet består af 2 numre, vi kalder dem a og b. Den følgende diskussion antager brugen af ​​et alfabet på 26 tegn (m = 26). a bør vælges til at være relativt prime til m (dvs. a bør ikke have nogen faktorer til fælles med m). 

affine chifferværdier

Kryptering

Den bruger modulær aritmetik til at transformere det heltal, som hvert almindeligt bogstav svarer til, til et andet heltal, der svarer til et chiffertekstbogstav. Krypteringsfunktionen for et enkelt bogstav er  

 E ( x ) = ( a x + b ) mod m modulus m: size of the alphabet a and b: key of the cipher. a must be chosen such that a and m are coprime. 

Dekryptering

Ved dechifrering af chifferteksten skal vi udføre de modsatte (eller omvendte) funktioner på chifferteksten for at hente klarteksten. Endnu en gang er det første skridt at konvertere hvert af chiffertekstbogstaverne til deres heltalsværdier. Dekrypteringsfunktionen er  

D ( x ) = a^-1 ( x - b ) mod m a^-1 : modular multiplicative inverse of a modulo m. i.e. it satisfies the equation 1 = a a^-1 mod m . 

At finde en multiplikativ invers  

Vi skal finde et tal x, således at: 
Hvis vi finder tallet x sådan, at ligningen er sand, er x det inverse af a, og vi kalder det a^-1. Den nemmeste måde at løse denne ligning på er at søge i hvert af tallene 1 til 25 og se, hvilken der opfylder ligningen. 

[gxd] = gcd(am); % we can ignore g and d we dont need them x = mod(xm);  

Hvis du nu ganger x og a og reducerer resultatet (mod 26) får du svaret 1. Husk at dette kun er definitionen af ​​en invers, dvs. hvis a*x = 1 (mod 26) så er x en invers af a (og a er en invers af x)

Eksempel: 

affin chiffer

Implementering:

C++
   //CPP program to illustrate Affine Cipher   #include       using     namespace     std  ;   //Key values of a and b   const     int     a     =     17  ;   const     int     b     =     20  ;   string     encryptMessage  (  string     msg  )   {      ///Cipher Text initially empty      string     cipher     =     ''  ;         for     (  int     i     =     0  ;     i      <     msg  .  length  ();     i  ++  )      {      // Avoid space to be encrypted       if  (  msg  [  i  ]  !=  ' '  )         /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      cipher     =     cipher     +         (  char  )     ((((  a     *     (  msg  [  i  ]  -  'A'  )     )     +     b  )     %     26  )     +     'A'  );      else      //else simply append space character      cipher     +=     msg  [  i  ];         }      return     cipher  ;   }   string     decryptCipher  (  string     cipher  )   {      string     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;          //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )      {      flag     =     (  a     *     i  )     %     26  ;          //Check if (a*i)%26 == 1      //then i will be the multiplicative inverse of a      if     (  flag     ==     1  )      {         a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  length  ();     i  ++  )      {      if  (  cipher  [  i  ]  !=  ' '  )      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      msg     =     msg     +         (  char  )     (((  a_inv     *     ((  cipher  [  i  ]  +  'A'     -     b  ))     %     26  ))     +     'A'  );      else      //else simply append space character      msg     +=     cipher  [  i  ];         }      return     msg  ;   }   //Driver Program   int     main  (  void  )   {      string     msg     =     'AFFINE CIPHER'  ;          //Calling encryption function      string     cipherText     =     encryptMessage  (  msg  );      cout      < <     'Encrypted Message is : '      < <     cipherText   < <  endl  ;          //Calling Decryption function      cout      < <     'Decrypted Message is: '      < <     decryptCipher  (  cipherText  );      return     0  ;   }   
Java
   // Java program to illustrate Affine Cipher   class   GFG      {      // Key values of a and b      static     int     a     =     17  ;      static     int     b     =     20  ;      static     String     encryptMessage  (  char  []     msg  )         {      /// Cipher Text initially empty      String     cipher     =     ''  ;      for     (  int     i     =     0  ;     i      <     msg  .  length  ;     i  ++  )      {      // Avoid space to be encrypted       /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */         if     (  msg  [  i  ]     !=     ' '  )         {      cipher     =     cipher      +     (  char  )     ((((  a     *     (  msg  [  i  ]     -     'A'  ))     +     b  )     %     26  )     +     'A'  );      }     else     // else simply append space character      {      cipher     +=     msg  [  i  ]  ;      }      }      return     cipher  ;      }      static     String     decryptCipher  (  String     cipher  )         {      String     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;      //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )         {      flag     =     (  a     *     i  )     %     26  ;      // Check if (a*i)%26 == 1      // then i will be the multiplicative inverse of a      if     (  flag     ==     1  )         {      a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  length  ();     i  ++  )         {      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */         if     (  cipher  .  charAt  (  i  )     !=     ' '  )         {      msg     =     msg     +     (  char  )     (((  a_inv     *         ((  cipher  .  charAt  (  i  )     +     'A'     -     b  ))     %     26  ))     +     'A'  );      }         else     //else simply append space character      {      msg     +=     cipher  .  charAt  (  i  );      }      }      return     msg  ;      }      // Driver code      public     static     void     main  (  String  []     args  )         {      String     msg     =     'AFFINE CIPHER'  ;      // Calling encryption function      String     cipherText     =     encryptMessage  (  msg  .  toCharArray  ());      System  .  out  .  println  (  'Encrypted Message is : '     +     cipherText  );      // Calling Decryption function      System  .  out  .  println  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));      }   }   // This code contributed by Rajput-Ji   
Python
   # Implementation of Affine Cipher in Python   # Extended Euclidean Algorithm for finding modular inverse   # eg: modinv(7 26) = 15   def   egcd  (  a     b  ):   x    y     u    v   =   0    1     1    0   while   a   !=   0  :   q     r   =   b  //  a     b  %  a   m     n   =   x  -  u  *  q     y  -  v  *  q   b    a     x    y     u    v   =   a    r     u    v     m    n   gcd   =   b   return   gcd     x     y   def   modinv  (  a     m  ):   gcd     x     y   =   egcd  (  a     m  )   if   gcd   !=   1  :   return   None   # modular inverse does not exist   else  :   return   x   %   m   # affine cipher encryption function    # returns the cipher text   def   affine_encrypt  (  text     key  ):      '''    C = (a*P + b) % 26    '''   return   ''  .  join  ([   chr  (((   key  [  0  ]  *  (  ord  (  t  )   -   ord  (  'A'  ))   +   key  [  1  ]   )   %   26  )   +   ord  (  'A'  ))   for   t   in   text  .  upper  ()  .  replace  (  ' '     ''  )   ])   # affine cipher decryption function    # returns original text   def   affine_decrypt  (  cipher     key  ):      '''    P = (a^-1 * (C - b)) % 26    '''   return   ''  .  join  ([   chr  (((   modinv  (  key  [  0  ]   26  )  *  (  ord  (  c  )   -   ord  (  'A'  )   -   key  [  1  ]))   %   26  )   +   ord  (  'A'  ))   for   c   in   cipher   ])   # Driver Code to test the above functions   def   main  ():   # declaring text and key   text   =   'AFFINE CIPHER'   key   =   [  17     20  ]   # calling encryption function   affine_encrypted_text   =   affine_encrypt  (  text     key  )   print  (  'Encrypted Text:   {}  '  .  format  (   affine_encrypted_text   ))   # calling decryption function   print  (  'Decrypted Text:   {}  '  .  format   (   affine_decrypt  (  affine_encrypted_text     key  )   ))   if   __name__   ==   '__main__'  :   main  ()   # This code is contributed by   # Bhushan Borole   
C#
   // C# program to illustrate Affine Cipher   using     System  ;       class     GFG      {      // Key values of a and b      static     int     a     =     17  ;      static     int     b     =     20  ;      static     String     encryptMessage  (  char  []     msg  )         {      /// Cipher Text initially empty      String     cipher     =     ''  ;      for     (  int     i     =     0  ;     i      <     msg  .  Length  ;     i  ++  )      {      // Avoid space to be encrypted       /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      if     (  msg  [  i  ]     !=     ' '  )         {      cipher     =     cipher      +     (  char  )     ((((  a     *     (  msg  [  i  ]     -     'A'  ))     +     b  )     %     26  )     +     'A'  );      }     else     // else simply append space character      {      cipher     +=     msg  [  i  ];      }      }      return     cipher  ;      }      static     String     decryptCipher  (  String     cipher  )         {      String     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;      //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )         {      flag     =     (  a     *     i  )     %     26  ;      // Check if (a*i)%26 == 1      // then i will be the multiplicative inverse of a      if     (  flag     ==     1  )         {      a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  Length  ;     i  ++  )         {      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      if     (  cipher  [  i  ]     !=     ' '  )         {      msg     =     msg     +     (  char  )     (((  a_inv     *         ((  cipher  [  i  ]     +     'A'     -     b  ))     %     26  ))     +     'A'  );      }         else     //else simply append space character      {      msg     +=     cipher  [  i  ];      }      }      return     msg  ;      }      // Driver code      public     static     void     Main  (  String  []     args  )         {      String     msg     =     'AFFINE CIPHER'  ;      // Calling encryption function      String     cipherText     =     encryptMessage  (  msg  .  ToCharArray  ());      Console  .  WriteLine  (  'Encrypted Message is : '     +     cipherText  );      // Calling Decryption function      Console  .  WriteLine  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));      }   }   /* This code contributed by PrinciRaj1992 */   
JavaScript
   //Javascript program to illustrate Affine Cipher   //Key values of a and b   let     a     =     17  ;   let     b     =     20  ;   function     encryptMessage  (  msg  )   {      ///Cipher Text initially empty      let     cipher     =     ''  ;         for     (  let     i     =     0  ;     i      <     msg  .  length  ;     i  ++  )      {      // Avoid space to be encrypted       if  (  msg  [  i  ]     !=  ' '  )         /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      cipher     =     cipher     +     String  .  fromCharCode  ((((  a     *     (  msg  [  i  ].  charCodeAt  (  0  )  -  65  )     )     +     b  )     %     26  )     +     65  );      else      //else simply append space character      cipher     +=     msg  [  i  ];         }      return     cipher  ;   }   function     decryptCipher  (  cipher  )   {      let     msg     =     ''  ;      let     a_inv     =     0  ;      let     flag     =     0  ;          //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  let     i     =     0  ;     i      <     26  ;     i  ++  )      {      flag     =     (  a     *     i  )     %     26  ;          //Check if (a*i)%26 == 1      //then i will be the multiplicative inverse of a      if     (  flag     ==     1  )      {         a_inv     =     i  ;      }      }      for     (  let     i     =     0  ;     i      <     cipher  .  length  ;     i  ++  )      {      if  (  cipher  [  i  ]  !=  ' '  )      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      msg     =     msg     +     String  .  fromCharCode  (((  a_inv     *     ((  cipher  [  i  ].  charCodeAt  (  0  )  +  65     -     b  ))     %     26  ))     +     65  );      else      //else simply append space character      msg     +=     cipher  [  i  ];         }      return     msg  ;   }   //Driver Program   let     msg     =     'AFFINE CIPHER'  ;   //Calling encryption function   let     cipherText     =     encryptMessage  (  msg  );   console  .  log  (  'Encrypted Message is : '     +     cipherText  );   //Calling Decryption function   console  .  log  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));   // The code is contributed by Arushi Jindal.    

Produktion
Encrypted Message is : UBBAHK CAPJKX Decrypted Message is: AFFINE CIPHER 

 

Opret quiz