Find ud af, om en undergruppe er i form af et bjerg eller ej

Find ud af, om en undergruppe er i form af et bjerg eller ej
Prøv det på GfG Practice #practiceLinkDiv { display: ingen !important; }

Vi får et array af heltal og et interval, vi skal finde ud af, om underarrayet, der falder i dette interval, har værdier i form af et bjerg eller ej. Alle værdier af subarrayet siges at være i form af et bjerg, hvis enten alle værdier er stigende eller faldende eller først stigende og derefter faldende. 
Mere formelt en subarray [a1 a2 a3...aN] siges at være i form af et bjerg, hvis der eksisterer et heltal K 1 <= K <= N such that 
a1 <= a2 <= a3 .. <= aK >= a(K+1) >= a(K+2) …. >= aN  

Eksempler:  

  Input : Arr[]   = [2 3 2 4 4 6 3 2] Range = [0 2]   Output :    Yes   Explanation:   The output is yes  subarray is [2 3 2] so subarray first increases and then decreases   Input:    Arr[] = [2 3 2 4 4 6 3 2] Range = [2 7]   Output:   Yes   Explanation:   The output is yes  subarray is [2 4 4 6 3 2] so subarray first increases and then decreases   Input:   Arr[]= [2 3 2 4 4 6 3 2] Range = [1 3]   Output:   no   Explanation:   The output is no subarray is [3 2 4] so subarray is not in the form above stated 
Recommended Practice Mountain Subarray problem Prøv det!

Løsning:  

    Nærme sig: Problemet har flere forespørgsler, så for hver forespørgsel bør løsningen beregnes med mindst mulig tidskompleksitet. Så opret to ekstra mellemrum af længden af ​​det originale array. For hvert element skal du finde det sidste indeks på venstre side, som er stigende, dvs. større end dets forrige element, og find elementet på højre side vil gemme det første indeks på højre side, som er faldende, dvs. større end dets næste element. Hvis disse værdier kan beregnes for hvert indeks i konstant tid, kan svaret gives i konstant tid for hvert givet område. Algoritme:  
    1. Opret to ekstra længder n venstre og højre og en ekstra variabel lastptr
    2. Initialiser venstre[0] = 0 og lastptr = 0
    3. Gå gennem det originale array fra andet indeks til slutningen
    4. For hvert indeks skal du kontrollere, om det er større end det foregående element, hvis ja, så opdater lastptr med det aktuelle indeks.
    5. For hver indeksbutik lastptr i venstre[i]
    6. initialisere højre[N-1] = N-1 og lastptr = N-1
    7. Gå gennem det originale array fra næstsidste indeks til starten
    8. For hvert indeks skal du kontrollere, om det er større end det næste element, hvis ja, så opdater lastptr med det aktuelle indeks.
    9. For hver indeksbutik lastptr i ret[i]
    10. Behandl nu forespørgslerne
    11. for hver forespørgsel l r hvis højre[l] >= venstre[r] udskriv derefter ja andet ingen
    Implementering:
C++
   // C++ program to check whether a subarray is in   // mountain form or not   #include          using     namespace     std  ;   // Utility method to construct left and right array   int     preprocess  (  int     arr  []     int     N       int     left  []     int     right  [])   {      // Initialize first left index as that index only      left  [  0  ]     =     0  ;      int     lastIncr     =     0  ;      for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ])      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }      // Initialize last right index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      int     firstDecr     =     N     -     1  ;      for     (  int     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ])      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }   }   // Method returns true if arr[L..R] is in mountain form   bool     isSubarrayMountainForm  (  int     arr  []     int     left  []      int     right  []     int     L       int     R  )   {      // return true only if right at starting range is      // greater than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]);   }   // Driver code to test above methods   int     main  ()   {      int     arr  []     =     {  2       3       2       4       4       6       3       2  };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      int     left  [  N  ]     right  [  N  ];      preprocess  (  arr       N       left       right  );      int     L     =     0  ;      int     R     =     2  ;      if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      cout      < <     'Subarray is in mountain form  n  '  ;      else      cout      < <     'Subarray is not in mountain form  n  '  ;      L     =     1  ;      R     =     3  ;      if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      cout      < <     'Subarray is in mountain form  n  '  ;      else      cout      < <     'Subarray is not in mountain form  n  '  ;      return     0  ;   }   
Java
   // Java program to check whether a subarray is in   // mountain form or not   class   SubArray   {      // Utility method to construct left and right array      static     void     preprocess  (  int     arr  []       int     N       int     left  []       int     right  []  )      {      // initialize first left index as that index only      left  [  0  ]     =     0  ;      int     lastIncr     =     0  ;          for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ]  )      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }          // initialize last right index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      int     firstDecr     =     N     -     1  ;          for     (  int     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ]  )      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }      }          // method returns true if arr[L..R] is in mountain form      static     boolean     isSubarrayMountainForm  (  int     arr  []       int     left  []        int     right  []       int     L       int     R  )      {      // return true only if right at starting range is      // greater than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]  );      }          public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {  2       3       2       4       4       6       3       2  };      int     N     =     arr  .  length  ;      int     left  []     =     new     int  [  N  ]  ;      int     right  []     =     new     int  [  N  ]  ;      preprocess  (  arr       N       left       right  );      int     L     =     0  ;      int     R     =     2  ;          if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      System  .  out  .  println  (  'Subarray is in mountain form'  );      else      System  .  out  .  println  (  'Subarray is not in mountain form'  );          L     =     1  ;      R     =     3  ;          if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      System  .  out  .  println  (  'Subarray is in mountain form'  );      else      System  .  out  .  println  (  'Subarray is not in mountain form'  );      }   }   // This Code is Contributed by Saket Kumar   
Python3
   # Python 3 program to check whether a subarray is in   # mountain form or not   # Utility method to construct left and right array   def   preprocess  (  arr     N     left     right  ):   # initialize first left index as that index only   left  [  0  ]   =   0   lastIncr   =   0   for   i   in   range  (  1    N  ):   # if current value is greater than previous   # update last increasing   if   (  arr  [  i  ]   >   arr  [  i   -   1  ]):   lastIncr   =   i   left  [  i  ]   =   lastIncr   # initialize last right index as that index only   right  [  N   -   1  ]   =   N   -   1   firstDecr   =   N   -   1   i   =   N   -   2   while  (  i   >=   0  ):   # if current value is greater than next   # update first decreasing   if   (  arr  [  i  ]   >   arr  [  i   +   1  ]):   firstDecr   =   i   right  [  i  ]   =   firstDecr   i   -=   1   # method returns true if arr[L..R] is in mountain form   def   isSubarrayMountainForm  (  arr     left     right     L     R  ):   # return true only if right at starting range is   # greater than left at ending range   return   (  right  [  L  ]   >=   left  [  R  ])   # Driver code    if   __name__   ==   '__main__'  :   arr   =   [  2     3     2     4     4     6     3     2  ]   N   =   len  (  arr  )   left   =   [  0   for   i   in   range  (  N  )]   right   =   [  0   for   i   in   range  (  N  )]   preprocess  (  arr     N     left     right  )   L   =   0   R   =   2   if   (  isSubarrayMountainForm  (  arr     left     right     L     R  )):   print  (  'Subarray is in mountain form'  )   else  :   print  (  'Subarray is not in mountain form'  )   L   =   1   R   =   3   if   (  isSubarrayMountainForm  (  arr     left     right     L     R  )):   print  (  'Subarray is in mountain form'  )   else  :   print  (  'Subarray is not in mountain form'  )   # This code is contributed by   # Surendra_Gangwar   
C#
   // C# program to check whether    // a subarray is in mountain    // form or not   using     System  ;   class     GFG   {          // Utility method to construct       // left and right array      static     void     preprocess  (  int     []  arr       int     N           int     []  left       int     []  right  )      {      // initialize first left       // index as that index only      left  [  0  ]     =     0  ;      int     lastIncr     =     0  ;          for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is       // greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ])      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }          // initialize last right       // index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      int     firstDecr     =     N     -     1  ;          for     (  int     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is       // greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ])      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }      }          // method returns true if      // arr[L..R] is in mountain form      static     bool     isSubarrayMountainForm  (  int     []  arr       int     []  left        int     []  right       int     L       int     R  )      {      // return true only if right at       // starting range is greater       // than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]);      }              // Driver Code      static     public     void     Main     ()      {      int     []  arr     =     {  2       3       2       4        4       6       3       2  };      int     N     =     arr  .  Length  ;      int     []  left     =     new     int  [  N  ];      int     []  right     =     new     int  [  N  ];      preprocess  (  arr       N       left       right  );          int     L     =     0  ;      int     R     =     2  ;          if     (  isSubarrayMountainForm  (  arr       left           right       L       R  ))      Console  .  WriteLine  (  'Subarray is in '     +         'mountain form'  );      else      Console  .  WriteLine  (  'Subarray is not '     +         'in mountain form'  );          L     =     1  ;      R     =     3  ;          if     (  isSubarrayMountainForm  (  arr       left           right       L       R  ))      Console  .  WriteLine  (  'Subarray is in '     +         'mountain form'  );      else      Console  .  WriteLine  (  'Subarray is not '     +         'in mountain form'  );      }   }   // This code is contributed by aj_36   
JavaScript
    <  script  >      // Javascript program to check whether       // a subarray is in mountain       // form or not          // Utility method to construct       // left and right array      function     preprocess  (  arr       N       left       right  )      {      // initialize first left       // index as that index only      left  [  0  ]     =     0  ;      let     lastIncr     =     0  ;          for     (  let     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is       // greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ])      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }          // initialize last right       // index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      let     firstDecr     =     N     -     1  ;          for     (  let     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is       // greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ])      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }      }          // method returns true if      // arr[L..R] is in mountain form      function     isSubarrayMountainForm  (  arr       left       right       L       R  )      {      // return true only if right at       // starting range is greater       // than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]);      }          let     arr     =     [  2       3       2       4       4       6       3       2  ];      let     N     =     arr  .  length  ;      let     left     =     new     Array  (  N  );      let     right     =     new     Array  (  N  );      preprocess  (  arr       N       left       right  );      let     L     =     0  ;      let     R     =     2  ;      if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      document  .  write  (  'Subarray is in '     +     'mountain form'     +     ' 
'
); else document . write ( 'Subarray is not ' + 'in mountain form' + '
'
); L = 1 ; R = 3 ; if ( isSubarrayMountainForm ( arr left right L R )) document . write ( 'Subarray is in ' + 'mountain form' ); else document . write ( 'Subarray is not ' + 'in mountain form' ); < /script>
    Produktion:
Subarray is in mountain form Subarray is not in mountain form 
    Kompleksitetsanalyse:  
      Tidskompleksitet: På). 
      Kun to traverseringer er nødvendige, så tidskompleksiteten er O(n). Rumkompleksitet: På). 
      To ekstra rum med længden n er påkrævet, så rummets kompleksitet er O(n).


 

Opret quiz