Cyklussortering

Cyklussortering
Prøv det på GfG Practice Cyklussortering

Cyklussortering er en på stedet ustabil sorteringsalgoritme, der er særlig nyttig, når du sorterer arrays, der indeholder elementer med et lille værdiområde. Det blev udviklet af W. D. Jones og udgivet i 1963.

Den grundlæggende idé bag cyklussortering er at opdele input-arrayet i cyklusser, hvor hver cyklus består af elementer, der tilhører den samme position i det sorterede output-array. Algoritmen udfører derefter en række swaps for at placere hvert element i dets korrekte position inden for dets cyklus, indtil alle cyklusser er afsluttet, og arrayet er sorteret.

Her er en trin-for-trin forklaring af cyklussorteringsalgoritmen:

  1. Start med en usorteret matrix af n elementer.
  2. Initialiser en variabel cyklusStart til 0.
  3. For hvert element i arrayet sammenlignes det med hvert andet element til højre. Hvis der er nogen elementer, der er mindre end det aktuelle element, inkrementeres cyklusStart.
  4. Hvis cycleStart stadig er 0 efter at have sammenlignet det første element med alle andre elementer, flyt til det næste element og gentag trin 3.
  5. Når et mindre element er fundet, skift det nuværende element med det første element i dets cyklus. Cyklussen fortsættes derefter, indtil det aktuelle element vender tilbage til sin oprindelige position.

Gentag trin 3-5, indtil alle cyklusser er afsluttet.

Arrayet er nu sorteret.

En af fordelene ved cyklussortering er, at den har et lavt hukommelsesfodaftryk, da den sorterer arrayet på plads og ikke kræver yderligere hukommelse til midlertidige variabler eller buffere. Det kan dog være langsomt i visse situationer, især når input-arrayet har et stort værdiområde. Ikke desto mindre forbliver cyklussortering en nyttig sorteringsalgoritme i visse sammenhænge, ​​såsom ved sortering af små arrays med begrænsede værdiområder.

Cyklussortering er en in-place sorteringsalgoritme ustabil sorteringsalgoritme og en sammenligningssort, der er teoretisk optimal med hensyn til det samlede antal skrivninger til det originale array. 
 

  • Det er optimalt i forhold til antallet af hukommelsesskrivninger. Det minimerer antallet af hukommelsesskrivninger at sortere (Hver værdi er enten skrevet nul gange, hvis den allerede er i sin korrekte position eller skrevet én gang til dens korrekte position.)
  • Det er baseret på ideen om, at det array, der skal sorteres, kan opdeles i cyklusser. Cykler kan visualiseres som en graf. Vi har n noder og en kant rettet fra node i til node j, hvis elementet ved i'te indeks skal være til stede ved j'te indeks i det sorterede array. 
    Cyklus i arr[] = {2 4 5 1 3} 
     
CyklussorteringCyklus i arr[] = {2 4 5 1 3}
  • Cyklus i arr[] = {4 3 2 1} 
     
Cyklus i arr[] = {4 3 2 1} 


Vi betragter alle cyklusser én efter én. Vi overvejer først den cyklus, der inkluderer det første element. Vi finder den korrekte position af det første element og placerer det på dets rigtige position siger j. Vi betragter den gamle værdi af arr[j] og finder dens korrekte position, vi fortsætter med at gøre dette, indtil alle elementer i den aktuelle cyklus er placeret i den korrekte position, dvs. vi kommer ikke tilbage til cyklusstartpunktet.

Pseudokode:

 Begin   
for
start:= 0 to n - 2 do
key := array[start]
location := start
for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
if location = start then
ignore lower part go for next iteration
while key = array[location] do
location: = location + 1
done
if location != start then
swap array[location] with key
while location != start do
location start


for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
while key= array[location]
location := location +1
if key != array[location]
Swap array[location] and key
done
done
End

Forklaring:  

  arr[] = {10 5 2 3}   
index = 0 1 2 3
cycle_start = 0
item = 10 = arr[0]

Find position where we put the item
pos = cycle_start
i=pos+1
while(i
if (arr[i] < item)
pos++;

We put 10 at arr[3] and change item to
old value of arr[3].
arr[] = {10 5 2 10 }
item = 3

Again rotate rest cycle that start with index '0'
Find position where we put the item = 3
we swap item with element at arr[1] now
arr[] = {10 3 2 10 }
item = 5

Again rotate rest cycle that start with index '0' and item = 5
we swap item with element at arr[2].
arr[] = {10 3 5 10 }
item = 2

Again rotate rest cycle that start with index '0' and item = 2
arr[] = { 2 3 5 10 }

Above is one iteration for cycle_stat = 0.
Repeat above steps for cycle_start = 1 2 ..n-2

Nedenfor er implementeringen af ​​ovenstående tilgang:

CPP
   // C++ program to implement cycle sort   #include          using     namespace     std  ;   // Function sort the array using Cycle sort   void     cycleSort  (  int     arr  []     int     n  )   {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and put it to on      // the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )     {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ];      // Find position where we put the item. We basically      // count all smaller elements on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      swap  (  item       arr  [  pos  ]);      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      swap  (  item       arr  [  pos  ]);      writes  ++  ;      }      }      }      // Number of memory writes or swaps      // cout  < < writes  < < endl ;   }   // Driver program to test above function   int     main  ()   {      int     arr  []     =     {     1       8       3       9       10       10       2       4     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cycleSort  (  arr       n  );      cout      < <     'After sort : '      < <     endl  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      cout      < <     arr  [  i  ]      < <     ' '  ;      return     0  ;   }   
Java
   // Java program to implement cycle sort   import     java.util.*  ;   import     java.lang.*  ;   class   GFG     {      // Function sort the array using Cycle sort      public     static     void     cycleSort  (  int     arr  []       int     n  )      {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and put it to on      // the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )     {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ]  ;      // Find position where we put the item. We basically      // count all smaller elements on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ]  )      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ]  ;      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ]  )      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ]  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ]  ;      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }      // Driver program to test above function      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     1       8       3       9       10       10       2       4     };      int     n     =     arr  .  length  ;      cycleSort  (  arr       n  );      System  .  out  .  println  (  'After sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      System  .  out  .  print  (  arr  [  i  ]     +     ' '  );      }   }   // Code Contributed by Mohit Gupta_OMG  <(0_o)>   
Python3
   # Python program to implement cycle sort   def   cycleSort  (  array  ):   writes   =   0   # Loop through the array to find cycles to rotate.   for   cycleStart   in   range  (  0     len  (  array  )   -   1  ):   item   =   array  [  cycleStart  ]   # Find where to put the item.   pos   =   cycleStart   for   i   in   range  (  cycleStart   +   1     len  (  array  )):   if   array  [  i  ]    <   item  :   pos   +=   1   # If the item is already there this is not a cycle.   if   pos   ==   cycleStart  :   continue   # Otherwise put the item there or right after any duplicates.   while   item   ==   array  [  pos  ]:   pos   +=   1   array  [  pos  ]   item   =   item     array  [  pos  ]   writes   +=   1   # Rotate the rest of the cycle.   while   pos   !=   cycleStart  :   # Find where to put the item.   pos   =   cycleStart   for   i   in   range  (  cycleStart   +   1     len  (  array  )):   if   array  [  i  ]    <   item  :   pos   +=   1   # Put the item there or right after any duplicates.   while   item   ==   array  [  pos  ]:   pos   +=   1   array  [  pos  ]   item   =   item     array  [  pos  ]   writes   +=   1   return   writes   # driver code    arr   =   [  1     8     3     9     10     10     2     4   ]   n   =   len  (  arr  )   cycleSort  (  arr  )   print  (  'After sort : '  )   for   i   in   range  (  0     n  )   :   print  (  arr  [  i  ]   end   =   ' '  )   # Code Contributed by Mohit Gupta_OMG  <(0_o)>   
C#
   // C# program to implement cycle sort   using     System  ;   class     GFG     {          // Function sort the array using Cycle sort      public     static     void     cycleSort  (  int  []     arr       int     n  )      {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and       // put it to on the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )      {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ];      // Find position where we put the item.       // We basically count all smaller elements       // on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      int     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }      // Driver program to test above function      public     static     void     Main  ()      {      int  []     arr     =     {     1       8       3       9       10       10       2       4     };      int     n     =     arr  .  Length  ;          // Function calling      cycleSort  (  arr       n  );      Console  .  WriteLine  (  'After sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      Console  .  Write  (  arr  [  i  ]     +     ' '  );      }   }   // This code is contributed by Nitin Mittal   
JavaScript
    <  script  >   // Javascript program to implement cycle sort      // Function sort the array using Cycle sort      function     cycleSort  (  arr       n  )      {          // count number of memory writes      let     writes     =     0  ;          // traverse array elements and put it to on      // the right place      for     (  let     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )      {          // initialize item as starting point      let     item     =     arr  [  cycle_start  ];          // Find position where we put the item. We basically      // count all smaller elements on right side of item.      let     pos     =     cycle_start  ;      for     (  let     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;          // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;          // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;          // put the item to it's right position      if     (  pos     !=     cycle_start  )      {      let     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }          // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )      {      pos     =     cycle_start  ;          // Find position where we put the element      for     (  let     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;          // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;          // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      let     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }       // Driver code       let     arr     =     [     1       8       3       9       10       10       2       4     ];      let     n     =     arr  .  length  ;      cycleSort  (  arr       n  );          document  .  write  (  'After sort : '     +     '  
'
); for ( let i = 0 ; i < n ; i ++ ) document . write ( arr [ i ] + ' ' ); // This code is contributed by susmitakundugoaldanga. < /script>

Produktion
After sort : 1 2 3 4 8 9 10 10  

Tidskompleksitetsanalyse

  • Worst Case: 2
  • Gennemsnitligt tilfælde: 2
  • Bedste tilfælde: 2 )

Hjælpeplads: O(1)

  • Rumkompleksiteten er konstant, fordi denne algoritme er på plads, så den bruger ikke ekstra hukommelse til at sortere.

Metode 2: Denne metode er kun anvendelig, når givne matrixværdier eller -elementer er i intervallet 1 til N eller  0 til N. I denne metode behøver vi ikke at rotere en matrix

Fremgangsmåde: Alle de givne matrixværdier skal være i intervallet 1 til N eller 0 til N. Hvis intervallet er 1 til N  så vil hvert array-elements korrekte position være indekset == værdi-1, dvs. betyder ved 0. indeksværdi vil være 1 på samme måde ved 1. indeksposition vil værdien være 2 og så videre indtil n'te værdi.

tilsvarende for 0 til N værdier vil den korrekte indeksposition for hvert arrayelement eller værdi være den samme som dens værdi, dvs. ved 0. indeks vil 0 være der, vil 1. position 1 være der.

Forklaring: 

 arr[] = {5 3 1 4 2}   
index = 0 1 2 3 4

i = 0;
while( i < arr.length)
correctposition = arr[i]-1;

find ith item correct position
for the first time i = 0 arr[0] = 5 correct index of 5 is 4 so arr[i] - 1 = 5-1 = 4


if( arr[i] <= arr.length && arr[i] != arr[correctposition])


arr[i] = 5 and arr[correctposition] = 4
so 5 <= 5 && 5 != 4 if condition true
now swap the 5 with 4


int temp = arr[i];
arr[i] = arr[correctposition];
arr[correctposition] = temp;

now resultant arr at this after 1st swap
arr[] = {2 3 1 4 5} now 5 is shifted at its correct position

now loop will run again check for i = 0 now arr[i] is = 2
after swapping 2 at its correct position
arr[] = {3 2 1 4 5}

now loop will run again check for i = 0 now arr[i] is = 3
after swapping 3 at its correct position
arr[] = {1 2 3 4 5}

now loop will run again check for i = 0 now arr[i] is = 1
this time 1 is at its correct position so else block will execute and i will increment i = 1;
once i exceeds the size of array will get array sorted.
arr[] = {1 2 3 4 5}


else

i++;
loop end;

once while loop end we get sorted array just print it
for( index = 0 ; index < arr.length; index++)
print(arr[index] + ' ')
sorted arr[] = {1 2 3 4 5}

Nedenfor er implementeringen af ​​ovenstående tilgang:

C++
   #include          using     namespace     std  ;   void     cyclicSort  (  int     arr  []     int     n  ){      int     i     =     0  ;         while  (  i      <     n  )      {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correct     =     arr  [  i  ]     -     1     ;      if  (  arr  [  i  ]     !=     arr  [  correct  ]){      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr  [  i  ]     arr  [  correct  ])     ;      }  else  {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++     ;      }      }   }   void     printArray  (  int     arr  []     int     size  )   {      int     i  ;      for     (  i     =     0  ;     i      <     size  ;     i  ++  )      cout      < <     arr  [  i  ]      < <     ' '  ;      cout      < <     endl  ;   }   int     main  ()     {      int     arr  []     =     {     3       2       4       5       1  };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cout      < <     'Before sorting array:   n  '  ;      printArray  (  arr       n  );      cyclicSort  (  arr       n  );      cout      < <     'Sorted array:   n  '  ;      printArray  (  arr       n  );      return     0  ;   }   
Java
   // java program to check implement cycle sort   import     java.util.*  ;   public     class   MissingNumber     {      public     static     void     main  (  String  []     args  )      {      int  []     arr     =     {     3       2       4       5       1     };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  'Before sort :'  );      System  .  out  .  println  (  Arrays  .  toString  (  arr  ));      CycleSort  (  arr       n  );          }      static     void     CycleSort  (  int  []     arr       int     n  )      {      int     i     =     0  ;      while     (  i      <     n  )     {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correctpos     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]      <     n     &&     arr  [  i  ]     !=     arr  [  correctpos  ]  )     {      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr       i       correctpos  );      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }      System  .  out  .  println  (  'After sort : '  );      System  .  out  .  print  (  Arrays  .  toString  (  arr  ));              }      static     void     swap  (  int  []     arr       int     i       int     correctpos  )      {      // swap elements with their correct indexes      int     temp     =     arr  [  i  ]  ;      arr  [  i  ]     =     arr  [  correctpos  ]  ;      arr  [  correctpos  ]     =     temp  ;      }   }   // this code is contributed by devendra solunke   
Python
   # Python program to check implement cycle sort   def   cyclicSort  (  arr     n  ):   i   =   0   while   i    <   n  :   # as array is of 1 based indexing so the   # correct position or index number of each   # element is element-1 i.e. 1 will be at 0th   # index similarly 2 correct index will 1 so   # on...   correct   =   arr  [  i  ]   -   1   if   arr  [  i  ]   !=   arr  [  correct  ]:   # if array element should be lesser than   # size and array element should not be at   # its correct position then only swap with   # its correct position or index value   arr  [  i  ]   arr  [  correct  ]   =   arr  [  correct  ]   arr  [  i  ]   else  :   # if element is at its correct position   # just increment i and check for remaining   # array elements   i   +=   1   def   printArray  (  arr  ):   print  (  *  arr  )   arr   =   [  3     2     4     5     1  ]   n   =   len  (  arr  )   print  (  'Before sorting array:'  )   printArray  (  arr  )   # Function Call   cyclicSort  (  arr     n  )   print  (  'Sorted array:'  )   printArray  (  arr  )   # This Code is Contributed by Prasad Kandekar(prasad264)   
C#
   using     System  ;   public     class     GFG     {      static     void     CycleSort  (  int  []     arr       int     n  )      {      int     i     =     0  ;      while     (  i      <     n  )     {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correctpos     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]      <     n     &&     arr  [  i  ]     !=     arr  [  correctpos  ])     {      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr       i       correctpos  );      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }      Console  .  Write  (  'nAfter sort : '  );      for     (  int     index     =     0  ;     index      <     n  ;     index  ++  )      Console  .  Write  (  arr  [  index  ]     +     ' '  );      }      static     void     swap  (  int  []     arr       int     i       int     correctpos  )      {      // swap elements with their correct indexes      int     temp     =     arr  [  i  ];      arr  [  i  ]     =     arr  [  correctpos  ];      arr  [  correctpos  ]     =     temp  ;      }      static     public     void     Main  ()      {      // Code      int  []     arr     =     {     3       2       4       5       1     };      int     n     =     arr  .  Length  ;      Console  .  Write  (  'Before sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      Console  .  Write  (  arr  [  i  ]     +     ' '  );      CycleSort  (  arr       n  );      }   }   // This code is contributed by devendra solunke   
JavaScript
   // JavaScript code for the above code   function     cyclicSort  (  arr       n  )     {      var     i     =     0  ;      while     (  i      <     n  )      {          // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      let     correct     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]     !==     arr  [  correct  ])      {          // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      [  arr  [  i  ]     arr  [  correct  ]]     =     [  arr  [  correct  ]     arr  [  i  ]];      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }   }   function     printArray  (  arr       size  )     {      for     (  var     i     =     0  ;     i      <     size  ;     i  ++  )     {      console  .  log  (  arr  [  i  ]     +     ' '  );      }      console  .  log  (  'n'  );   }   var     arr     =     [  3       2       4       5       1  ];   var     n     =     arr  .  length  ;   console  .  log  (  'Before sorting array: n'  );   printArray  (  arr       n  );   cyclicSort  (  arr       n  );   console  .  log  (  'Sorted array: n'  );   printArray  (  arr       n  );   // This Code is Contributed by Prasad Kandekar(prasad264)   

Produktion
Before sorting array: 3 2 4 5 1 Sorted array: 1 2 3 4 5  

Tidskompleksitetsanalyse:

  • Worst Case: På) 
  • Gennemsnitligt tilfælde: På) 
  • Bedste tilfælde: På)

Hjælpeplads: O(1)

Fordel ved cyklussortering:

  1. Der kræves ingen yderligere opbevaring.
  2.  in-place sorteringsalgoritme.
  3.  Et minimum antal skrivninger til hukommelsen
  4.  Cyklussortering er nyttig, når arrayet er gemt i EEPROM eller FLASH. 

Ulempe  ved cyklussortering:

  1.  Det er ikke mest brugt.
  2.  Det har mere tidskompleksitet o(n^2)
  3.  Ustabil sorteringsalgoritme.

Applikation  af cyklussort:

  • Denne sorteringsalgoritme er bedst egnet til situationer, hvor hukommelsesskrivning eller swap-operationer er dyre.
  • Nyttig til komplekse problemer. 
     
Opret quiz