Steinův algoritmus pro nalezení GCD

Steinův algoritmus pro nalezení GCD
Zkuste to na GfG Practice

Steinův algoritmus nebo binární GCD algoritmus je algoritmus, který počítá největšího společného dělitele dvou nezáporných celých čísel. Steinův algoritmus nahrazuje dělení aritmetickými posuny porovnáváním a odečítáním.

Příklady:  

Vstup : a = 17 b = 34
Výstup : 17

Vstup : a = 50 b = 49
Výstup : 1

Algoritmus k nalezení GCD pomocí Steinova algoritmu gcd(a b)  

Algoritmus je především optimalizací oproti standardu Euklidovský algoritmus pro GCD

  1. Pokud jsou obě a i b 0, gcd je nula, gcd(0 0) = 0.
  2. gcd(a 0) = a a gcd(0 b) = b, protože vše dělí 0.
  3. Jestliže a a b jsou oba sudé, gcd(a b) = 2*gcd(a/2 b/2), protože 2 je společný dělitel. Násobení 2 lze provést pomocí operátoru bitového posunu.
  4. Je-li a sudé a b liché, gcd(a b) = gcd(a/2 b). Podobně je-li a liché a b je sudé tehdy 
    gcd(a b) = gcd(a b/2). Je to proto, že 2 není společný dělitel.
  5. Pokud jsou obě a a b liché, pak gcd(a b) = gcd(|a-b|/2 b). Všimněte si, že rozdíl dvou lichých čísel je sudý
  6. Opakujte kroky 3–5, dokud a = b nebo dokud a = 0. V obou případech je GCD výkon (2 k) * b, kde výkon (2 k) je 2 zvýšení na mocninu k a k je počet společných faktorů 2 nalezených v kroku 3.
C++
   // Iterative C++ program to   // implement Stein's Algorithm   #include          using     namespace     std  ;   // Function to implement   // Stein's Algorithm   int     gcd  (  int     a       int     b  )   {      /* GCD(0 b) == b; GCD(a 0) == a    GCD(0 0) == 0 */      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      /*Finding K where K is the    greatest power of 2    that divides both a and b. */      int     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      /* Dividing a by 2 until a becomes odd */      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      /* From here on 'a' is always odd. */      do      {      /* If b is even remove all factor of 2 in b */      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      /* Now a and b are both odd.    Swap if necessary so a  <= b    then set b = b - a (which is even).*/      if     (  a     >     b  )      swap  (  a       b  );     // Swap u and v.      b     =     (  b     -     a  );      }  while     (  b     !=     0  );      /* restore common factors of 2 */      return     a      < <     k  ;   }   // Driver code   int     main  ()   {      int     a     =     34       b     =     17  ;      printf  (  'Gcd of given numbers is %d  n  '       gcd  (  a       b  ));      return     0  ;   }   
Java
   // Iterative Java program to   // implement Stein's Algorithm   import     java.io.*  ;   class   GFG     {      // Function to implement Stein's      // Algorithm      static     int     gcd  (  int     a       int     b  )      {      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // Finding K where K is the greatest      // power of 2 that divides both a and b      int     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      // Dividing a by 2 until a becomes odd      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      // From here on 'a' is always odd.      do         {      // If b is even remove      // all factor of 2 in b      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      // Now a and b are both odd. Swap      // if necessary so a  <= b then set      // b = b - a (which is even)      if     (  a     >     b  )         {      // Swap u and v.      int     temp     =     a  ;      a     =     b  ;      b     =     temp  ;      }      b     =     (  b     -     a  );      }     while     (  b     !=     0  );      // restore common factors of 2      return     a      < <     k  ;      }      // Driver code      public     static     void     main  (  String     args  []  )      {      int     a     =     34       b     =     17  ;      System  .  out  .  println  (  'Gcd of given '      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by Nikita Tiwari   
Python
   # Iterative Python 3 program to   # implement Stein's Algorithm   # Function to implement   # Stein's Algorithm   def   gcd  (  a     b  ):   # GCD(0 b) == b; GCD(a 0) == a   # GCD(0 0) == 0   if   (  a   ==   0  ):   return   b   if   (  b   ==   0  ):   return   a   # Finding K where K is the   # greatest power of 2 that   # divides both a and b.   k   =   0   while  (((  a   |   b  )   &   1  )   ==   0  ):   a   =   a   >>   1   b   =   b   >>   1   k   =   k   +   1   # Dividing a by 2 until a becomes odd   while   ((  a   &   1  )   ==   0  ):   a   =   a   >>   1   # From here on 'a' is always odd.   while  (  b   !=   0  ):   # If b is even remove all   # factor of 2 in b   while   ((  b   &   1  )   ==   0  ):   b   =   b   >>   1   # Now a and b are both odd. Swap if   # necessary so a  <= b then set   # b = b - a (which is even).   if   (  a   >   b  ):   # Swap u and v.   temp   =   a   a   =   b   b   =   temp   b   =   (  b   -   a  )   # restore common factors of 2   return   (  a    < <   k  )   # Driver code   a   =   34   b   =   17   print  (  'Gcd of given numbers is '     gcd  (  a     b  ))   # This code is contributed by Nikita Tiwari.   
C#
   // Iterative C# program to implement   // Stein's Algorithm   using     System  ;   class     GFG     {      // Function to implement Stein's      // Algorithm      static     int     gcd  (  int     a       int     b  )      {      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // Finding K where K is the greatest      // power of 2 that divides both a and b      int     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      // Dividing a by 2 until a becomes odd      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      // From here on 'a' is always odd      do         {      // If b is even remove      // all factor of 2 in b      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      /* Now a and b are both odd. Swap    if necessary so a  <= b then set    b = b - a (which is even).*/      if     (  a     >     b  )     {      // Swap u and v.      int     temp     =     a  ;      a     =     b  ;      b     =     temp  ;      }      b     =     (  b     -     a  );      }     while     (  b     !=     0  );      /* restore common factors of 2 */      return     a      < <     k  ;      }      // Driver code      public     static     void     Main  ()      {      int     a     =     34       b     =     17  ;      Console  .  Write  (  'Gcd of given '      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by nitin mittal   
JavaScript
    <  script  >   // Iterative JavaScript program to   // implement Stein's Algorithm   // Function to implement   // Stein's Algorithm   function     gcd  (     a       b  )   {      /* GCD(0 b) == b; GCD(a 0) == a    GCD(0 0) == 0 */      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      /*Finding K where K is the    greatest power of 2    that divides both a and b. */      let     k  ;      for     (  k     =     0  ;     ((  a     |     b  )     &     1  )     ==     0  ;     ++  k  )         {      a     >>=     1  ;      b     >>=     1  ;      }      /* Dividing a by 2 until a becomes odd */      while     ((  a     &     1  )     ==     0  )      a     >>=     1  ;      /* From here on 'a' is always odd. */      do      {      /* If b is even remove all factor of 2 in b */      while     ((  b     &     1  )     ==     0  )      b     >>=     1  ;      /* Now a and b are both odd.    Swap if necessary so a  <= b    then set b = b - a (which is even).*/      if     (  a     >     b  ){      let     t     =     a  ;      a     =     b  ;      b     =     t  ;      }      b     =     (  b     -     a  );      }  while     (  b     !=     0  );      /* restore common factors of 2 */      return     a      < <     k  ;   }   // Driver code      let     a     =     34       b     =     17  ;      document  .  write  (  'Gcd of given numbers is '  +     gcd  (  a       b  ));   // This code contributed by gauravrajput1     <  /script>   
PHP
      // Iterative php program to    // implement Stein's Algorithm   // Function to implement    // Stein's Algorithm   function   gcd  (  $a     $b  )   {   // GCD(0 b) == b; GCD(a 0) == a   // GCD(0 0) == 0   if   (  $a   ==   0  )   return   $b  ;   if   (  $b   ==   0  )   return   $a  ;   // Finding K where K is the greatest   // power of 2 that divides both a and b.   $k  ;   for   (  $k   =   0  ;   ((  $a   |   $b  )   &   1  )   ==   0  ;   ++  $k  )   {   $a   >>=   1  ;   $b   >>=   1  ;   }   // Dividing a by 2 until a becomes odd    while   ((  $a   &   1  )   ==   0  )   $a   >>=   1  ;   // From here on 'a' is always odd.   do   {   // If b is even remove    // all factor of 2 in b    while   ((  $b   &   1  )   ==   0  )   $b   >>=   1  ;   // Now a and b are both odd. Swap   // if necessary so a  <= b then set    // b = b - a (which is even)   if   (  $a   >   $b  )   swap  (  $a     $b  );   // Swap u and v.   $b   =   (  $b   -   $a  );   }   while   (  $b   !=   0  );   // restore common factors of 2   return   $a    < <   $k  ;   }   // Driver code   $a   =   34  ;   $b   =   17  ;   echo   'Gcd of given numbers is '   .   gcd  (  $a     $b  );   // This code is contributed by ajit   ?>   

Výstup
Gcd of given numbers is 17 

Časová náročnost: O(N*N)
Pomocný prostor: O(1)

[Očekávaný přístup 2] Rekurzivní implementace - O(N*N) Čas a O(N*N) Plocha

C++
   // Recursive C++ program to   // implement Stein's Algorithm   #include          using     namespace     std  ;   // Function to implement   // Stein's Algorithm   int     gcd  (  int     a       int     b  )   {      if     (  a     ==     b  )      return     a  ;      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // look for factors of 2      if     (  ~  a     &     1  )     // a is even      {      if     (  b     &     1  )     // b is odd      return     gcd  (  a     >>     1       b  );      else     // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }      if     (  ~  b     &     1  )     // a is odd b is even      return     gcd  (  a       b     >>     1  );      // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );      return     gcd  ((  b     -     a  )     >>     1       a  );   }   // Driver code   int     main  ()   {      int     a     =     34       b     =     17  ;      printf  (  'Gcd of given numbers is %d  n  '       gcd  (  a       b  ));      return     0  ;   }   
Java
   // Recursive Java program to   // implement Stein's Algorithm   import     java.io.*  ;   class   GFG     {      // Function to implement      // Stein's Algorithm      static     int     gcd  (  int     a       int     b  )      {      if     (  a     ==     b  )      return     a  ;      // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // look for factors of 2      if     ((  ~  a     &     1  )     ==     1  )     // a is even      {      if     ((  b     &     1  )     ==     1  )     // b is odd      return     gcd  (  a     >>     1       b  );      else     // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }      // a is odd b is even      if     ((  ~  b     &     1  )     ==     1  )      return     gcd  (  a       b     >>     1  );      // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );      return     gcd  ((  b     -     a  )     >>     1       a  );      }      // Driver code      public     static     void     main  (  String     args  []  )      {      int     a     =     34       b     =     17  ;      System  .  out  .  println  (  'Gcd of given'      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by Nikita Tiwari   
Python
   # Recursive Python 3 program to   # implement Stein's Algorithm   # Function to implement   # Stein's Algorithm   def   gcd  (  a     b  ):   if   (  a   ==   b  ):   return   a   # GCD(0 b) == b; GCD(a 0) == a   # GCD(0 0) == 0   if   (  a   ==   0  ):   return   b   if   (  b   ==   0  ):   return   a   # look for factors of 2   # a is even   if   ((  ~  a   &   1  )   ==   1  ):   # b is odd   if   ((  b   &   1  )   ==   1  ):   return   gcd  (  a   >>   1     b  )   else  :   # both a and b are even   return   (  gcd  (  a   >>   1     b   >>   1  )    < <   1  )   # a is odd b is even   if   ((  ~  b   &   1  )   ==   1  ):   return   gcd  (  a     b   >>   1  )   # reduce larger number   if   (  a   >   b  ):   return   gcd  ((  a   -   b  )   >>   1     b  )   return   gcd  ((  b   -   a  )   >>   1     a  )   # Driver code   a     b   =   34     17   print  (  'Gcd of given numbers is '     gcd  (  a     b  ))   # This code is contributed   # by Nikita Tiwari.   
C#
   // Recursive C# program to   // implement Stein's Algorithm   using     System  ;   class     GFG     {      // Function to implement      // Stein's Algorithm      static     int     gcd  (  int     a       int     b  )      {      if     (  a     ==     b  )      return     a  ;      // GCD(0 b) == b;      // GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;      // look for factors of 2      // a is even      if     ((  ~  a     &     1  )     ==     1  )     {      // b is odd      if     ((  b     &     1  )     ==     1  )      return     gcd  (  a     >>     1       b  );      else      // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }      // a is odd b is even      if     ((  ~  b     &     1  )     ==     1  )      return     gcd  (  a       b     >>     1  );      // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );      return     gcd  ((  b     -     a  )     >>     1       a  );      }      // Driver code      public     static     void     Main  ()      {      int     a     =     34       b     =     17  ;      Console  .  Write  (  'Gcd of given'      +     'numbers is '     +     gcd  (  a       b  ));      }   }   // This code is contributed by nitin mittal.   
JavaScript
    <  script  >   // JavaScript program to   // implement Stein's Algorithm      // Function to implement      // Stein's Algorithm      function     gcd  (  a       b  )      {      if     (  a     ==     b  )      return     a  ;          // GCD(0 b) == b; GCD(a 0) == a      // GCD(0 0) == 0      if     (  a     ==     0  )      return     b  ;      if     (  b     ==     0  )      return     a  ;          // look for factors of 2      if     ((  ~  a     &     1  )     ==     1  )     // a is even      {      if     ((  b     &     1  )     ==     1  )     // b is odd      return     gcd  (  a     >>     1       b  );          else     // both a and b are even      return     gcd  (  a     >>     1       b     >>     1  )      < <     1  ;      }          // a is odd b is even      if     ((  ~  b     &     1  )     ==     1  )      return     gcd  (  a       b     >>     1  );          // reduce larger number      if     (  a     >     b  )      return     gcd  ((  a     -     b  )     >>     1       b  );          return     gcd  ((  b     -     a  )     >>     1       a  );      }   // Driver Code      let     a     =     34       b     =     17  ;      document  .  write  (  'Gcd of given '      +     'numbers is '     +     gcd  (  a       b  ));        <  /script>   
PHP
      // Recursive PHP program to   // implement Stein's Algorithm   // Function to implement   // Stein's Algorithm   function   gcd  (  $a     $b  )   {   if   (  $a   ==   $b  )   return   $a  ;   /* GCD(0 b) == b; GCD(a 0) == a    GCD(0 0) == 0 */   if   (  $a   ==   0  )   return   $b  ;   if   (  $b   ==   0  )   return   $a  ;   // look for factors of 2   if   (  ~  $a   &   1  )   // a is even   {   if   (  $b   &   1  )   // b is odd   return   gcd  (  $a   >>   1     $b  );   else   // both a and b are even   return   gcd  (  $a   >>   1     $b   >>   1  )    < <   1  ;   }   if   (  ~  $b   &   1  )   // a is odd b is even   return   gcd  (  $a     $b   >>   1  );   // reduce larger number   if   (  $a   >   $b  )   return   gcd  ((  $a   -   $b  )   >>   1     $b  );   return   gcd  ((  $b   -   $a  )   >>   1     $a  );   }   // Driver code   $a   =   34  ;   $b   =   17  ;   echo   'Gcd of given numbers is: '     gcd  (  $a     $b  );   // This code is contributed by aj_36   ?>   

Výstup
Gcd of given numbers is 17 

Časová složitost : O(N*N) kde N je počet bitů ve větším čísle.
Pomocný prostor: O(N*N) kde N je počet bitů ve větším čísle.

Může se vám také líbit - Základní a rozšířený euklidovský algoritmus

Výhody oproti Euklidovu GCD algoritmu

  • Steinův algoritmus je optimalizovaná verze Euklidova GCD algoritmu.
  • je efektivnější při použití operátoru bitového posunu.