Papír nařezaný na minimální počet čtverců

Papír nařezaný na minimální počet čtverců

Vzhledem k tomu obdélníkový papír o rozměrech a x b . Úkolem je rozřezat celý papír minimální počet náměstí kusy. Můžeme si vybrat čtvercové kusy libovolné velikosti, ale musí být nakrájeny aniž by se překrývaly nebo ponechaly prostor navíc .

Příklady:  

Vstup: a = 5 b = 8

Papír rozřezaný na minimální-počet-čtverečků-15 čtverců vystřižených z papíru o velikosti 5 X 8

výstup: 5
Vysvětlení: Papír můžeme rozstříhat na 5 čtverců: 1 čtverec o velikosti 5x5 1 čtverec o velikosti 3x3 1 čtverec o velikosti 2x2 a 2 čtverce o velikosti 1x1.

Vstup: a = 13 b = 11

Papír rozřezaný na minimální-počet-čtverečků-26 čtverců vystřižených z papíru o velikosti 13 X 11

výstup: 6
Vysvětlení: Papír můžeme rozstříhat na 6 čtverců: 1 čtverec o velikosti 7x7 1 čtverec o velikosti 6x6 1 čtverec o velikosti 5x5 2 čtverce o velikosti 4x4 a 1 čtverec o velikosti 1x1.

Vstup: a = 6 b = 7

Papír nařezaný na minimální-počet-čtverečků-35 čtverců vystřižených z papíru o velikosti 6 X 7

výstup: 5
Vysvětlení: Papír můžeme rozstříhat na 5 čtverců: 1 čtverec o velikosti 4x4 2 čtverce o velikosti 3x3 a 2 čtverce o velikosti 3x3.

Obsah

[Nesprávný přístup 1] Použití chamtivé techniky

Na první pohled by se mohlo zdát, že problém lze snadno vyřešit tak, že z papíru nejprve vystřihneme co největší čtverec a poté ze zbývajícího papíru vystřihneme největší čtverec a tak dále, dokud papír neořízneme celý. Toto řešení je ale nesprávné.

Proč Greedy Approach nefunguje?

Zvažte papír velikosti 6x7 pak když se pokusíme papír hltavě řezat, dostaneme 7 čtverce: 1 čtverec velikosti 6x6 a 6 čtverců o velikosti 1x1 přičemž správné řešení je: 5. Zištný přístup tedy nebude fungovat.

[Nesprávný přístup 2] Použití dynamického programování

Dynamické programování s vertikálními nebo horizontálními řezy: Dalším řešením, které se může zdát správné, je použití Dynamické programování . Můžeme udržovat tabulku dp[][] takovou, že dp[i][j] = minimální počet čtverců, které lze vyříznout z papíru o velikosti i x j . Pak pro papír velikosti axb

  • Můžeme to zkusit oříznout podél každého řádku: dp[i][j] = min(dp[i][j] 1 + dp[i - k][j] + dp[k][j]) kde k může být v rozmezí [1 i - 1].
  • Můžeme to zkusit oříznout podél každého sloupce: dp[i][j] = min(dp[i][j] 1 + dp[i][j - k] + dp[i][k]) kde k může být v rozsahu [1 j - 1].

Nakonec bude odpovědí minimum všech řezů. Toto řešení je ale také nesprávné.

Proč řezání svisle nebo vodorovně s přístupem dynamického programování nefunguje?

To nebude fungovat, protože předpokládáme, že vertikální nebo horizontální řez vždy rozdělí obdélník na dvě části. Zvažte papír velikosti 13x11 pak, když se pokusíme oříznout papír pomocí DP přístupu, dostaneme 8 čtverců, ale správná odpověď (jak je ukázáno v příkladech) je 6. Dynamické programování tedy nebude fungovat.

[Správný přístup] Pomocí DFS a dynamického programování

The nápad je ořezat celý papír pomocí DFS v zdola nahoru způsob. V každém kroku najděte nejnižší levý roh papíru a pokuste se z tohoto rohu vyříznout čtverce všech možných velikostí. Po vyříznutí čtverce znovu najděte levý nejnižší roh zbývajícího papíru, abyste mohli vyřezat čtverce všech možných velikostí a tak dále. Ale pokud bychom zkoušeli všechny možné řezy od nejnižšího levého rohu každé možné velikosti papíru, pak by to bylo docela neefektivní. Můžeme ji optimalizovat pomocí Dynamické programování pro uložení minimálních řezů pro každou možnou velikost papíru.

Pro jednoznačnou identifikaci jakékoli velikosti papíru můžeme udržovat pole remSq[] tak, že remSq[i] ukládá počet zbývajících čtverců o velikosti 1x1 v i-tém sloupci papíru. Tedy pro papír o velikosti 6x7 remSq[] = {6 6 6 6 6 6 6}. Abychom našli nejnižší levý roh, najdeme první index s maximálním počtem zbývajících čtverců. Můžeme tedy hashovat hodnotu pole remSq[], abychom našli jedinečný klíč pro všechny možné hodnoty pole remSq[].

C++
   // C++ Program to find minimum number of squares to cut   // from a paper of size axb   #include          using     namespace     std  ;   // function to get the hash key for remSq array   int     getKey  (  vector   <  int  >     &  remSq       int     b  )     {      int     base     =     1  ;      int     key     =     0  ;      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )      {      key     +=     (  remSq  [  i  ]     *     base  );      base     =     base     *     (  b     +     1  );      }      return     key  ;   }   // Recursive function to find the minimum number of square cuts   // for a given remSq array   int     minCutUtil  (  vector   <  int  >     &  remSq       int     a       int     b           map   <  int       int  >     &  memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      int     start       end  ;      // Check if we have previously calculated the answer      // for the same state      int     key     =     getKey  (  remSq       b  );      if     (  memo  .  find  (  key  )     !=     memo  .  end  ())      return     memo  [  key  ];      int     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ];      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ==     0  )      return     0  ;      end     =     start  ;      vector   <  int  >     newRemSq     =     remSq  ;      int     ans     =     INT_MAX  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      int     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !=     maxRemSq     ||         newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  int     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      return     memo  [  key  ]     =     ans  ;   }   // Function to find the minimum number of squares we can cut    // using paper of size a X b   int     minCut  (  int     a       int     b  )     {      // if the given rectangle is a square      if     (  a     ==     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      vector   <  int  >     remSq  (  b       a  );      map   <  int       int  >     memo  ;      return     minCutUtil  (  remSq       a       b       memo  );   }   int     main  ()     {      // Sample Input      int     a     =     13       b     =     11  ;      // Function call to get minimum number       // of squares for axb      cout      < <     minCut  (  a       b  );      return     0  ;   }   
Java
   // Java Program to find minimum number of squares to cut   // from a paper of size axb   import     java.util.*  ;   class   GfG     {      // function to get the hash key for remSq array      static     int     getKey  (  int  []     remSq       int     b  )     {      int     base     =     1  ;      int     key     =     0  ;      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      key     +=     (  remSq  [  i  ]     *     base  );      base     =     base     *     (  b     +     1  );      }      return     key  ;      }      // Recursive function to find the minimum number of square cuts      // for a given remSq array      static     int     minCutUtil  (  int  []     remSq       int     a       int     b        Map   <  Integer       Integer  >     memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      int     start     =     0       end  ;      // Check if we have previously calculated the answer      // for the same state      int     key     =     getKey  (  remSq       b  );      if     (  memo  .  containsKey  (  key  ))      return     memo  .  get  (  key  );      int     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ]  ;      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ==     0  )      return     0  ;      end     =     start  ;      int  []     newRemSq     =     Arrays  .  copyOf  (  remSq       b  );      int     ans     =     Integer  .  MAX_VALUE  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      int     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !=     maxRemSq     ||      newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  int     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     Math  .  min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      memo  .  put  (  key       ans  );      return     ans  ;      }      // Function to find the minimum number of squares we can cut       // using paper of size a X b      static     int     minCut  (  int     a       int     b  )     {      // if the given rectangle is a square      if     (  a     ==     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      int  []     remSq     =     new     int  [  b  ]  ;      Arrays  .  fill  (  remSq       a  );      Map   <  Integer       Integer  >     memo     =     new     HashMap   <>  ();      return     minCutUtil  (  remSq       a       b       memo  );      }      public     static     void     main  (  String  []     args  )     {      // Sample Input      int     a     =     13       b     =     11  ;      // Function call to get minimum number       // of squares for axb      System  .  out  .  println  (  minCut  (  a       b  ));      }   }   
Python
   # Python Program to find minimum number of squares to cut   # from a paper of size axb   # function to get the hash key for remSq array   def   getKey  (  remSq     b  ):   base   =   1   key   =   0   for   i   in   range  (  b  ):   key   +=   remSq  [  i  ]   *   base   base   =   base   *   (  b   +   1  )   return   key   # Recursive function to find the minimum number of square cuts   # for a given remSq array   def   minCutUtil  (  remSq     a     b     memo  ):   # pointers to mark the start and end of range    # with maximum remaining squares   start   =   0   # Check if we have previously calculated the answer   # for the same state   key   =   getKey  (  remSq     b  )   if   key   in   memo  :   return   memo  [  key  ]   maxRemSq   =   0   # Find the starting point of min height   for   i   in   range  (  b  ):   if   remSq  [  i  ]   >   maxRemSq  :   maxRemSq   =   remSq  [  i  ]   start   =   i   # If max remaining squares = 0 then we have already   # cut the entire paper   if   maxRemSq   ==   0  :   return   0   end   =   start   newRemSq   =   remSq  [:]   ans   =   float  (  'inf'  )   # Find the ending point of min height   while   end    <   b  :   # length of edge of square from start till current end   squareEdge   =   end   -   start   +   1   # If the current column does not have maximum remaining   # squares or if it's impossible to cut a square of   # size squareEdge then break out of the loop   if   newRemSq  [  end  ]   !=   maxRemSq   or    newRemSq  [  end  ]   -   squareEdge    <   0  :   break   # If we can cut a square of size squareEdge    # update the remainingSquares   for   i   in   range  (  start     end   +   1  ):   newRemSq  [  i  ]   =   maxRemSq   -   squareEdge   # Find the solution for new remainingSquares   ans   =   min  (  ans     1   +   minCutUtil  (  newRemSq     a     b     memo  ))   end   +=   1   memo  [  key  ]   =   ans   return   ans   # Function to find the minimum number of squares we can cut    # using paper of size a X b   def   minCut  (  a     b  ):   # if the given rectangle is a square   if   a   ==   b  :   return   1   # Initialize remaining squares = a for all the b columns   remSq   =   [  a  ]   *   b   memo   =   {}   return   minCutUtil  (  remSq     a     b     memo  )   if   __name__   ==   '__main__'  :   # Sample Input   a   =   13   b   =   11   # Function call to get minimum number    # of squares for axb   print  (  minCut  (  a     b  ))   
C#
   // C# Program to find minimum number of squares to cut   // from a paper of size axb   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // function to get the hash key for remSq array      static     int     getKey  (  int  []     remSq       int     b  )     {      int     baseVal     =     1  ;      int     key     =     0  ;      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      key     +=     (  remSq  [  i  ]     *     baseVal  );      baseVal     =     baseVal     *     (  b     +     1  );      }      return     key  ;      }      // Recursive function to find the minimum number of square cuts      // for a given remSq array      static     int     minCutUtil  (  int  []     remSq       int     a       int     b        Dictionary   <  int       int  >     memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      int     start     =     0       end  ;      // Check if we have previously calculated the answer      // for the same state      int     key     =     getKey  (  remSq       b  );      if     (  memo  .  ContainsKey  (  key  ))      return     memo  [  key  ];      int     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ];      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ==     0  )      return     0  ;      end     =     start  ;      int  []     newRemSq     =     (  int  [])  remSq  .  Clone  ();      int     ans     =     int  .  MaxValue  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      int     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !=     maxRemSq     ||      newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  int     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     Math  .  Min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      memo  [  key  ]     =     ans  ;      return     ans  ;      }      // Function to find the minimum number of squares we can cut       // using paper of size a X b      static     int     minCut  (  int     a       int     b  )     {      // if the given rectangle is a square      if     (  a     ==     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      int  []     remSq     =     new     int  [  b  ];      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     remSq  [  i  ]     =     a  ;      Dictionary   <  int       int  >     memo     =     new     Dictionary   <  int       int  >  ();      return     minCutUtil  (  remSq       a       b       memo  );      }      static     void     Main  ()     {      int     a     =     13       b     =     11  ;      // Function call to get minimum number       // of squares for axb      Console  .  WriteLine  (  minCut  (  a       b  ));      }   }   
JavaScript
   // JavaScript Program to find minimum number of squares to cut   // from a paper of size axb   // function to get the hash key for remSq array   function     getKey  (  remSq       b  )     {      let     base     =     1  ;      let     key     =     0  ;      for     (  let     i     =     0  ;     i      <     b  ;     i  ++  )     {      key     +=     (  remSq  [  i  ]     *     base  );      base     =     base     *     (  b     +     1  );      }      return     key  ;   }   // Recursive function to find the minimum number of square cuts   // for a given remSq array   function     minCutUtil  (  remSq       a       b       memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      let     start     =     0       end  ;      // Check if we have previously calculated the answer      // for the same state      let     key     =     getKey  (  remSq       b  );      if     (  key     in     memo  )      return     memo  [  key  ];      let     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  let     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ];      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ===     0  )      return     0  ;      end     =     start  ;      let     newRemSq     =     remSq  .  slice  ();      let     ans     =     Infinity  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      let     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !==     maxRemSq     ||      newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  let     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     Math  .  min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      memo  [  key  ]     =     ans  ;      return     ans  ;   }   // Function to find the minimum number of squares we can cut    // using paper of size a X b   function     minCut  (  a       b  )     {      // if the given rectangle is a square      if     (  a     ===     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      let     remSq     =     new     Array  (  b  ).  fill  (  a  );      let     memo     =     {};      return     minCutUtil  (  remSq       a       b       memo  );   }   // Driver Code   let     a     =     13       b     =     11  ;   // Function call to get minimum number    // of squares for axb   console  .  log  (  minCut  (  a       b  ));   

Výstup
6 

Časová složitost: O(a^b) pro každý z b sloupců můžeme mít čtverce.
Pomocný prostor: O(a^b) díky zapamatování ukládajícím každý jedinečný stav.