Nejdelší možná trasa v matici s překážkami

Nejdelší možná trasa v matici s překážkami
Zkuste to na GfG Practice Nejdelší možná trasa v matici s překážkami

Je dána 2D binární matice spolu s[][] kde některé buňky představují překážky (označené 0 ) a zbytek jsou volné buňky (označené 1 ) vaším úkolem je najít délku nejdelší možné trasy ze zdrojové buňky (xs ys) do cílové buňky (xd yd) .

  • Můžete se přesunout pouze do sousedních buněk (nahoru dolů vlevo vpravo).
  • Diagonální pohyby nejsou povoleny.
  • Buňku jednou navštívenou v cestě nelze znovu navštívit ve stejné cestě.
  • Pokud není možné dosáhnout cíle, vraťte se -1 .

Příklady:
Vstup: xs = 0 ys = 0 xd = 1 yd = 7
s[][] = [ [1 1 1 1 1 1 1 1 1 1]
[1 1 0 1 1 0 1 1 0 1]
[1 1 1 1 1 1 1 1 1 1] ]
výstup: 24
Vysvětlení:

Vstup: xs = 0 ys = 3 xd = 2 yd = 2
s[][] =[ [1 0 0 1 0]
[0 0 0 1 0]
[0 1 1 0 0] ]
výstup: -1
Vysvětlení:
Vidíme, že je to nemožné
dosáhnout buňky (22) z (03).

Obsah

[Přístup] Použití Backtracking s navštívenou maticí

Myšlenka je použít Zpětné sledování . Začneme od zdrojové buňky matice posouvat se vpřed všemi čtyřmi povolenými směry a rekurzivně kontrolujeme, zda vedou k řešení nebo ne. Pokud je cíl nalezen, aktualizujeme hodnotu nejdelší cesty, jinak pokud žádné z výše uvedených řešení nefunguje, vrátíme z naší funkce hodnotu false.

CPP
   #include          #include         #include         #include          using     namespace     std  ;   // Function to find the longest path using backtracking   int     dfs  (  vector   <  vector   <  int  >>     &  mat           vector   <  vector   <  bool  >>     &  visited       int     i           int     j       int     x       int     y  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||         mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ])     {      return     -1  ;         }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          int     maxPath     =     -1  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited           ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -1  )     {      maxPath     =     max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;   }   int     findLongestPath  (  vector   <  vector   <  int  >>     &  mat           int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -1  ;      }          vector   <  vector   <  bool  >>     visited  (  m       vector   <  bool  >  (  n       false  ));      return     dfs  (  mat       visited       xs       ys       xd       yd  );   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -1  )      cout      < <     result      < <     endl  ;      else      cout      < <     -1      < <     endl  ;          return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   GFG     {          // Function to find the longest path using backtracking      public     static     int     dfs  (  int  [][]     mat       boolean  [][]     visited        int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ]  )     {      return     -  1  ;     // Invalid path      }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       visited       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;      }          public     static     int     findLongestPath  (  int  [][]     mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -  1  ;      }          boolean  [][]     visited     =     new     boolean  [  m  ][  n  ]  ;      return     dfs  (  mat       visited       xs       ys       xd       yd  );      }          public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;      int     xd     =     1       yd     =     7  ;          int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      System  .  out  .  println  (  result  );      else      System  .  out  .  println  (  -  1  );      }   }   
Python
   # Function to find the longest path using backtracking   def   dfs  (  mat     visited     i     j     x     y  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # If destination is reached   if   i   ==   x   and   j   ==   y  :   return   0   # If cell is invalid blocked or already visited   if   i    <   0   or   i   >=   m   or   j    <   0   or   j   >=   n   or   mat  [  i  ][  j  ]   ==   0   or   visited  [  i  ][  j  ]:   return   -  1   # Invalid path   # Mark current cell as visited   visited  [  i  ][  j  ]   =   True   maxPath   =   -  1   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   pathLength   =   dfs  (  mat     visited     ni     nj     x     y  )   # If a valid path is found from this direction   if   pathLength   !=   -  1  :   maxPath   =   max  (  maxPath     1   +   pathLength  )   # Backtrack - unmark current cell   visited  [  i  ][  j  ]   =   False   return   maxPath   def   findLongestPath  (  mat     xs     ys     xd     yd  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # Check if source or destination is blocked   if   mat  [  xs  ][  ys  ]   ==   0   or   mat  [  xd  ][  yd  ]   ==   0  :   return   -  1   visited   =   [[  False   for   _   in   range  (  n  )]   for   _   in   range  (  m  )]   return   dfs  (  mat     visited     xs     ys     xd     yd  )   def   main  ():   mat   =   [   [  1     1     1     1     1     1     1     1     1     1  ]   [  1     1     0     1     1     0     1     1     0     1  ]   [  1     1     1     1     1     1     1     1     1     1  ]   ]   xs     ys   =   0     0   xd     yd   =   1     7   result   =   findLongestPath  (  mat     xs     ys     xd     yd  )   if   result   !=   -  1  :   print  (  result  )   else  :   print  (  -  1  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG   {      // Function to find the longest path using backtracking      static     int     dfs  (  int  []     mat       bool  []     visited           int     i       int     j       int     x       int     y  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )      {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i       j  ]     ==     0     ||     visited  [  i       j  ])      {      return     -  1  ;     // Invalid path      }          // Mark current cell as visited      visited  [  i       j  ]     =     true  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )      {      maxPath     =     Math  .  Max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i       j  ]     =     false  ;          return     maxPath  ;      }          static     int     FindLongestPath  (  int  []     mat       int     xs       int     ys       int     xd       int     yd  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // Check if source or destination is blocked      if     (  mat  [  xs       ys  ]     ==     0     ||     mat  [  xd       yd  ]     ==     0  )      {      return     -  1  ;      }          bool  []     visited     =     new     bool  [  m       n  ];      return     dfs  (  mat       visited       xs       ys       xd       yd  );      }          static     void     Main  ()      {      int  []     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     FindLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      Console  .  WriteLine  (  result  );      else      Console  .  WriteLine  (  -  1  );      }   }   
JavaScript
   // Function to find the longest path using backtracking   function     dfs  (  mat       visited       i       j       x       y  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // If destination is reached      if     (  i     ===     x     &&     j     ===     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||         mat  [  i  ][  j  ]     ===     0     ||     visited  [  i  ][  j  ])     {      return     -  1  ;         }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          let     maxPath     =     -  1  ;          // Four possible moves: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       visited           ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !==     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;   }   function     findLongestPath  (  mat       xs       ys       xd       yd  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ===     0     ||     mat  [  xd  ][  yd  ]     ===     0  )     {      return     -  1  ;      }          const     visited     =     Array  (  m  ).  fill  ().  map  (()     =>     Array  (  n  ).  fill  (  false  ));      return     dfs  (  mat       visited       xs       ys       xd       yd  );   }      const     mat     =     [      [  1       1       1       1       1       1       1       1       1       1  ]      [  1       1       0       1       1       0       1       1       0       1  ]      [  1       1       1       1       1       1       1       1       1       1  ]      ];          const     xs     =     0       ys     =     0  ;         const     xd     =     1       yd     =     7  ;             const     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !==     -  1  )      console  .  log  (  result  );      else      console  .  log  (  -  1  );   

Výstup
24  

Časová náročnost: O(4^(m*n)) Pro každou buňku v matici m x n algoritmus zkoumá až čtyři možné směry (nahoru dolů vlevo vpravo) vedoucí k exponenciálnímu počtu cest. V nejhorším případě prozkoumá všechny možné cesty, což má za následek časovou složitost 4^(m*n).
Pomocný prostor: O(m*n) Algoritmus používá matici m x n navštívených buněk ke sledování navštívených buněk a rekurzní zásobník, který může v nejhorším případě narůst až do hloubky m * n (např. při zkoumání cesty pokrývající všechny buňky). Pomocný prostor je tedy O(m*n).

[Optimalizovaný přístup] Bez využití prostoru navíc

Místo udržování samostatné navštívené matice můžeme znovu použít vstupní matici k označení navštívených buněk během průchodu. To šetří místo navíc a stále zajišťuje, že nebudeme znovu navštěvovat stejnou buňku na cestě.

Níže je uveden postup krok za krokem:

  1. Začněte od zdrojové buňky (xs ys) .
  2. V každém kroku prozkoumejte všechny čtyři možné směry (zprava dolů doleva nahoru).
  3. Pro každý platný tah:
    • Zkontrolujte hranice a ujistěte se, že buňka má hodnotu 1 (volná buňka).
    • Označte buňku jako navštívenou tím, že ji dočasně nastavíte na 0 .
    • Vraťte se do další buňky a zvyšte délku cesty.
  4. Pokud cílová buňka (xd yd) je dosaženo, porovnejte aktuální délku cesty s dosavadním maximem a aktualizujte odpověď.
  5. Backtrack: obnovte původní hodnotu buňky ( 1 ), než se vrátíte, abyste ji mohli prozkoumat jinými cestami.
  6. Pokračujte v průzkumu, dokud nenajdete všechny možné cesty.
  7. Vraťte maximální délku cesty. Pokud je cíl nedosažitelný, vraťte se -1
C++
   #include          #include         #include         #include          using     namespace     std  ;   // Function to find the longest path using backtracking without extra space   int     dfs  (  vector   <  vector   <  int  >>     &  mat       int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0  )     {      return     -1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          int     maxPath     =     -1  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -1  )     {      maxPath     =     max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;   }   int     findLongestPath  (  vector   <  vector   <  int  >>     &  mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -1  )      cout      < <     result      < <     endl  ;      else      cout      < <     -1      < <     endl  ;          return     0  ;   }   
Java
   public     class   GFG     {          // Function to find the longest path using backtracking without extra space      public     static     int     dfs  (  int  [][]     mat       int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0  )     {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;      }          public     static     int     findLongestPath  (  int  [][]     mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );      }          public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      System  .  out  .  println  (  result  );      else      System  .  out  .  println  (  -  1  );      }   }   
Python
   # Function to find the longest path using backtracking without extra space   def   dfs  (  mat     i     j     x     y  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # If destination is reached   if   i   ==   x   and   j   ==   y  :   return   0   # If cell is invalid or blocked (0 means blocked or visited)   if   i    <   0   or   i   >=   m   or   j    <   0   or   j   >=   n   or   mat  [  i  ][  j  ]   ==   0  :   return   -  1   # Mark current cell as visited by temporarily setting it to 0   mat  [  i  ][  j  ]   =   0   maxPath   =   -  1   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   pathLength   =   dfs  (  mat     ni     nj     x     y  )   # If a valid path is found from this direction   if   pathLength   !=   -  1  :   maxPath   =   max  (  maxPath     1   +   pathLength  )   # Backtrack - restore the cell's original value (1)   mat  [  i  ][  j  ]   =   1   return   maxPath   def   findLongestPath  (  mat     xs     ys     xd     yd  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # Check if source or destination is blocked   if   mat  [  xs  ][  ys  ]   ==   0   or   mat  [  xd  ][  yd  ]   ==   0  :   return   -  1   return   dfs  (  mat     xs     ys     xd     yd  )   def   main  ():   mat   =   [   [  1     1     1     1     1     1     1     1     1     1  ]   [  1     1     0     1     1     0     1     1     0     1  ]   [  1     1     1     1     1     1     1     1     1     1  ]   ]   xs     ys   =   0     0   xd     yd   =   1     7   result   =   findLongestPath  (  mat     xs     ys     xd     yd  )   if   result   !=   -  1  :   print  (  result  )   else  :   print  (  -  1  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG   {      // Function to find the longest path using backtracking without extra space      static     int     dfs  (  int  []     mat       int     i       int     j       int     x       int     y  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )      {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i       j  ]     ==     0  )      {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i       j  ]     =     0  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )      {      maxPath     =     Math  .  Max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i       j  ]     =     1  ;          return     maxPath  ;      }          static     int     FindLongestPath  (  int  []     mat       int     xs       int     ys       int     xd       int     yd  )      {      // Check if source or destination is blocked      if     (  mat  [  xs       ys  ]     ==     0     ||     mat  [  xd       yd  ]     ==     0  )      {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );      }          static     void     Main  ()      {      int  []     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     FindLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      Console  .  WriteLine  (  result  );      else      Console  .  WriteLine  (  -  1  );      }   }   
JavaScript
   // Function to find the longest path using backtracking without extra space   function     dfs  (  mat       i       j       x       y  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // If destination is reached      if     (  i     ===     x     &&     j     ===     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ===     0  )     {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          let     maxPath     =     -  1  ;          // Four possible moves: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !==     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;   }   function     findLongestPath  (  mat       xs       ys       xd       yd  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ===     0     ||     mat  [  xd  ][  yd  ]     ===     0  )     {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );   }      const     mat     =     [      [  1       1       1       1       1       1       1       1       1       1  ]      [  1       1       0       1       1       0       1       1       0       1  ]      [  1       1       1       1       1       1       1       1       1       1  ]      ];          const     xs     =     0       ys     =     0  ;         const     xd     =     1       yd     =     7  ;             const     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !==     -  1  )      console  .  log  (  result  );      else      console  .  log  (  -  1  );   

Výstup
24  

Časová náročnost: O(4^(m*n))Algoritmus stále zkoumá až čtyři směry na buňku v matici m x n, což vede k exponenciálnímu počtu cest. Úprava na místě neovlivňuje počet prozkoumaných cest, takže časová složitost zůstává 4^(m*n).
Pomocný prostor: O(m*n) Zatímco navštívená matice je eliminována úpravou vstupní matice na místě, zásobník rekurze stále vyžaduje prostor O(m*n), protože maximální hloubka rekurze může být v nejhorším případě m * n (např. cesta navštěvující všechny buňky v mřížce s většinou 1s).