Cyklické řazení

Cyklické řazení
Zkuste to na GfG Practice Cyklické řazení

Cyklické řazení je na místě nestabilní třídicí algoritmus, který je zvláště užitečný při řazení polí obsahujících prvky s malým rozsahem hodnot. Byl vyvinut W. D. Jonesem a publikován v roce 1963.

Základní myšlenkou řazení cyklů je rozdělení vstupního pole do cyklů, kde každý cyklus sestává z prvků, které patří na stejnou pozici v seřazeném výstupním poli. Algoritmus poté provede řadu výměn, aby umístil každý prvek na správnou pozici v rámci svého cyklu, dokud nejsou všechny cykly dokončeny a pole není setříděno.

Zde je podrobné vysvětlení algoritmu řazení cyklu:

  1. Začněte s netříděným polem n prvků.
  2. Inicializujte proměnnou cycleStart na 0.
  3. Pro každý prvek v poli jej porovnejte s každým dalším prvkem napravo. Pokud existují nějaké prvky, které jsou menší než aktuální přírůstek prvku cycleStart.
  4. Pokud je cycleStart po porovnání prvního prvku se všemi ostatními prvky stále 0, přejděte na další prvek a opakujte krok 3.
  5. Jakmile je nalezen menší prvek, vyměňte aktuální prvek za první prvek v jeho cyklu. Cyklus pak pokračuje, dokud se aktuální prvek nevrátí do své původní polohy.

Opakujte kroky 3-5, dokud nebudou dokončeny všechny cykly.

Pole je nyní seřazeno.

Jednou z výhod cyklického řazení je, že má nízkou paměťovou náročnost, protože třídí pole na místě a nevyžaduje další paměť pro dočasné proměnné nebo vyrovnávací paměti. V určitých situacích však může být pomalý, zejména když má vstupní pole velký rozsah hodnot. Cyklické třídění však zůstává užitečným třídicím algoritmem v určitých kontextech, například při třídění malých polí s omezenými rozsahy hodnot.

Cyklické řazení je algoritmus řazení na místě nestabilní algoritmus řazení a srovnávací řazení, které je teoreticky optimální z hlediska celkového počtu zápisů do původního pole. 
 

  • Je optimální z hlediska počtu zápisů do paměti. To minimalizuje počet zápisů do paměti seřadit (Každá hodnota je buď zapsána nulakrát, pokud je již na správné pozici, nebo jednou zapsána na správnou pozici.)
  • Je založen na myšlence, že pole, které se má třídit, lze rozdělit do cyklů. Cykly lze zobrazit jako graf. Máme n uzlů a hranu směrovanou z uzlu i do uzlu j, pokud prvek na i-tém indexu musí být přítomen na j-tém indexu v seřazeném poli. 
    Cyklus v arr[] = {2 4 5 1 3} 
     
Cyklické řazeníCyklus v arr[] = {2 4 5 1 3}
  • Cyklus v arr[] = {4 3 2 1} 
     
Cyklus v arr[] = {4 3 2 1} 


Jeden po druhém zvažujeme všechny cykly. Nejprve zvážíme cyklus, který obsahuje první prvek. Najdeme správnou polohu prvního prvku a umístíme ho na správnou pozici, řekněme j. Uvážíme starou hodnotu arr[j] a najdeme její správnou polohu. Takto pokračujeme, dokud nejsou všechny prvky aktuálního cyklu umístěny na správnou pozici, tj. nevrátíme se zpět do počátečního bodu cyklu.

Pseudokód:

 Begin   
for
start:= 0 to n - 2 do
key := array[start]
location := start
for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
if location = start then
ignore lower part go for next iteration
while key = array[location] do
location: = location + 1
done
if location != start then
swap array[location] with key
while location != start do
location start


for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
while key= array[location]
location := location +1
if key != array[location]
Swap array[location] and key
done
done
End

Vysvětlení:  

  arr[] = {10 5 2 3}   
index = 0 1 2 3
cycle_start = 0
item = 10 = arr[0]

Find position where we put the item
pos = cycle_start
i=pos+1
while(i
if (arr[i] < item)
pos++;

We put 10 at arr[3] and change item to
old value of arr[3].
arr[] = {10 5 2 10 }
item = 3

Again rotate rest cycle that start with index '0'
Find position where we put the item = 3
we swap item with element at arr[1] now
arr[] = {10 3 2 10 }
item = 5

Again rotate rest cycle that start with index '0' and item = 5
we swap item with element at arr[2].
arr[] = {10 3 5 10 }
item = 2

Again rotate rest cycle that start with index '0' and item = 2
arr[] = { 2 3 5 10 }

Above is one iteration for cycle_stat = 0.
Repeat above steps for cycle_start = 1 2 ..n-2

Níže je uvedena implementace výše uvedeného přístupu:

CPP
   // C++ program to implement cycle sort   #include          using     namespace     std  ;   // Function sort the array using Cycle sort   void     cycleSort  (  int     arr  []     int     n  )   {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and put it to on      // the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )     {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ];      // Find position where we put the item. We basically      // count all smaller elements on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      swap  (  item       arr  [  pos  ]);      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      swap  (  item       arr  [  pos  ]);      writes  ++  ;      }      }      }      // Number of memory writes or swaps      // cout  < < writes  < < endl ;   }   // Driver program to test above function   int     main  ()   {      int     arr  []     =     {     1       8       3       9       10       10       2       4     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cycleSort  (  arr       n  );      cout      < <     'After sort : '      < <     endl  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      cout      < <     arr  [  i  ]      < <     ' '  ;      return     0  ;   }   
Java
   // Java program to implement cycle sort   import     java.util.*  ;   import     java.lang.*  ;   class   GFG     {      // Function sort the array using Cycle sort      public     static     void     cycleSort  (  int     arr  []       int     n  )      {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and put it to on      // the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )     {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ]  ;      // Find position where we put the item. We basically      // count all smaller elements on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ]  )      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ]  ;      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ]  )      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ]  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ]  ;      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }      // Driver program to test above function      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     1       8       3       9       10       10       2       4     };      int     n     =     arr  .  length  ;      cycleSort  (  arr       n  );      System  .  out  .  println  (  'After sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      System  .  out  .  print  (  arr  [  i  ]     +     ' '  );      }   }   // Code Contributed by Mohit Gupta_OMG  <(0_o)>   
Python3
   # Python program to implement cycle sort   def   cycleSort  (  array  ):   writes   =   0   # Loop through the array to find cycles to rotate.   for   cycleStart   in   range  (  0     len  (  array  )   -   1  ):   item   =   array  [  cycleStart  ]   # Find where to put the item.   pos   =   cycleStart   for   i   in   range  (  cycleStart   +   1     len  (  array  )):   if   array  [  i  ]    <   item  :   pos   +=   1   # If the item is already there this is not a cycle.   if   pos   ==   cycleStart  :   continue   # Otherwise put the item there or right after any duplicates.   while   item   ==   array  [  pos  ]:   pos   +=   1   array  [  pos  ]   item   =   item     array  [  pos  ]   writes   +=   1   # Rotate the rest of the cycle.   while   pos   !=   cycleStart  :   # Find where to put the item.   pos   =   cycleStart   for   i   in   range  (  cycleStart   +   1     len  (  array  )):   if   array  [  i  ]    <   item  :   pos   +=   1   # Put the item there or right after any duplicates.   while   item   ==   array  [  pos  ]:   pos   +=   1   array  [  pos  ]   item   =   item     array  [  pos  ]   writes   +=   1   return   writes   # driver code    arr   =   [  1     8     3     9     10     10     2     4   ]   n   =   len  (  arr  )   cycleSort  (  arr  )   print  (  'After sort : '  )   for   i   in   range  (  0     n  )   :   print  (  arr  [  i  ]   end   =   ' '  )   # Code Contributed by Mohit Gupta_OMG  <(0_o)>   
C#
   // C# program to implement cycle sort   using     System  ;   class     GFG     {          // Function sort the array using Cycle sort      public     static     void     cycleSort  (  int  []     arr       int     n  )      {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and       // put it to on the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )      {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ];      // Find position where we put the item.       // We basically count all smaller elements       // on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      int     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }      // Driver program to test above function      public     static     void     Main  ()      {      int  []     arr     =     {     1       8       3       9       10       10       2       4     };      int     n     =     arr  .  Length  ;          // Function calling      cycleSort  (  arr       n  );      Console  .  WriteLine  (  'After sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      Console  .  Write  (  arr  [  i  ]     +     ' '  );      }   }   // This code is contributed by Nitin Mittal   
JavaScript
    <  script  >   // Javascript program to implement cycle sort      // Function sort the array using Cycle sort      function     cycleSort  (  arr       n  )      {          // count number of memory writes      let     writes     =     0  ;          // traverse array elements and put it to on      // the right place      for     (  let     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )      {          // initialize item as starting point      let     item     =     arr  [  cycle_start  ];          // Find position where we put the item. We basically      // count all smaller elements on right side of item.      let     pos     =     cycle_start  ;      for     (  let     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;          // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;          // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;          // put the item to it's right position      if     (  pos     !=     cycle_start  )      {      let     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }          // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )      {      pos     =     cycle_start  ;          // Find position where we put the element      for     (  let     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;          // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;          // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      let     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }       // Driver code       let     arr     =     [     1       8       3       9       10       10       2       4     ];      let     n     =     arr  .  length  ;      cycleSort  (  arr       n  );          document  .  write  (  'After sort : '     +     '  
'
); for ( let i = 0 ; i < n ; i ++ ) document . write ( arr [ i ] + ' ' ); // This code is contributed by susmitakundugoaldanga. < /script>

Výstup
After sort : 1 2 3 4 8 9 10 10  

Analýza časové složitosti

  • Nejhorší případ: Na 2
  • Průměrný případ: Na 2
  • Nejlepší případ: Na 2 )

Pomocný prostor: O(1)

  • Prostorová složitost je konstantní, protože tento algoritmus je na místě, takže ke třídění nepoužívá žádnou paměť navíc.

Metoda 2: Tato metoda je použitelná pouze v případě, že dané hodnoty nebo prvky pole jsou v rozsahu 1 až N nebo 0 až N. Při této metodě nepotřebujeme pole otáčet

přístup: Všechny uvedené hodnoty pole by měly být v rozsahu 1 až N nebo 0 až N. Pokud je rozsah 1 až N  , pak správná pozice každého prvku pole bude index == hodnota-1, tj. průměr na 0. hodnotě indexu bude 1, podobně na 1. pozici indexu bude hodnota 2 a tak dále až do n-té hodnoty.

podobně pro hodnoty 0 až N bude správná poloha indexu každého prvku pole nebo hodnota stejná jako jeho hodnota, tj. na 0. indexu tam bude 0, bude tam 1. pozice.

Vysvětlení: 

 arr[] = {5 3 1 4 2}   
index = 0 1 2 3 4

i = 0;
while( i < arr.length)
correctposition = arr[i]-1;

find ith item correct position
for the first time i = 0 arr[0] = 5 correct index of 5 is 4 so arr[i] - 1 = 5-1 = 4


if( arr[i] <= arr.length && arr[i] != arr[correctposition])


arr[i] = 5 and arr[correctposition] = 4
so 5 <= 5 && 5 != 4 if condition true
now swap the 5 with 4


int temp = arr[i];
arr[i] = arr[correctposition];
arr[correctposition] = temp;

now resultant arr at this after 1st swap
arr[] = {2 3 1 4 5} now 5 is shifted at its correct position

now loop will run again check for i = 0 now arr[i] is = 2
after swapping 2 at its correct position
arr[] = {3 2 1 4 5}

now loop will run again check for i = 0 now arr[i] is = 3
after swapping 3 at its correct position
arr[] = {1 2 3 4 5}

now loop will run again check for i = 0 now arr[i] is = 1
this time 1 is at its correct position so else block will execute and i will increment i = 1;
once i exceeds the size of array will get array sorted.
arr[] = {1 2 3 4 5}


else

i++;
loop end;

once while loop end we get sorted array just print it
for( index = 0 ; index < arr.length; index++)
print(arr[index] + ' ')
sorted arr[] = {1 2 3 4 5}

Níže je uvedena implementace výše uvedeného přístupu:

C++
   #include          using     namespace     std  ;   void     cyclicSort  (  int     arr  []     int     n  ){      int     i     =     0  ;         while  (  i      <     n  )      {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correct     =     arr  [  i  ]     -     1     ;      if  (  arr  [  i  ]     !=     arr  [  correct  ]){      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr  [  i  ]     arr  [  correct  ])     ;      }  else  {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++     ;      }      }   }   void     printArray  (  int     arr  []     int     size  )   {      int     i  ;      for     (  i     =     0  ;     i      <     size  ;     i  ++  )      cout      < <     arr  [  i  ]      < <     ' '  ;      cout      < <     endl  ;   }   int     main  ()     {      int     arr  []     =     {     3       2       4       5       1  };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cout      < <     'Before sorting array:   n  '  ;      printArray  (  arr       n  );      cyclicSort  (  arr       n  );      cout      < <     'Sorted array:   n  '  ;      printArray  (  arr       n  );      return     0  ;   }   
Java
   // java program to check implement cycle sort   import     java.util.*  ;   public     class   MissingNumber     {      public     static     void     main  (  String  []     args  )      {      int  []     arr     =     {     3       2       4       5       1     };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  'Before sort :'  );      System  .  out  .  println  (  Arrays  .  toString  (  arr  ));      CycleSort  (  arr       n  );          }      static     void     CycleSort  (  int  []     arr       int     n  )      {      int     i     =     0  ;      while     (  i      <     n  )     {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correctpos     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]      <     n     &&     arr  [  i  ]     !=     arr  [  correctpos  ]  )     {      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr       i       correctpos  );      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }      System  .  out  .  println  (  'After sort : '  );      System  .  out  .  print  (  Arrays  .  toString  (  arr  ));              }      static     void     swap  (  int  []     arr       int     i       int     correctpos  )      {      // swap elements with their correct indexes      int     temp     =     arr  [  i  ]  ;      arr  [  i  ]     =     arr  [  correctpos  ]  ;      arr  [  correctpos  ]     =     temp  ;      }   }   // this code is contributed by devendra solunke   
Python
   # Python program to check implement cycle sort   def   cyclicSort  (  arr     n  ):   i   =   0   while   i    <   n  :   # as array is of 1 based indexing so the   # correct position or index number of each   # element is element-1 i.e. 1 will be at 0th   # index similarly 2 correct index will 1 so   # on...   correct   =   arr  [  i  ]   -   1   if   arr  [  i  ]   !=   arr  [  correct  ]:   # if array element should be lesser than   # size and array element should not be at   # its correct position then only swap with   # its correct position or index value   arr  [  i  ]   arr  [  correct  ]   =   arr  [  correct  ]   arr  [  i  ]   else  :   # if element is at its correct position   # just increment i and check for remaining   # array elements   i   +=   1   def   printArray  (  arr  ):   print  (  *  arr  )   arr   =   [  3     2     4     5     1  ]   n   =   len  (  arr  )   print  (  'Before sorting array:'  )   printArray  (  arr  )   # Function Call   cyclicSort  (  arr     n  )   print  (  'Sorted array:'  )   printArray  (  arr  )   # This Code is Contributed by Prasad Kandekar(prasad264)   
C#
   using     System  ;   public     class     GFG     {      static     void     CycleSort  (  int  []     arr       int     n  )      {      int     i     =     0  ;      while     (  i      <     n  )     {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correctpos     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]      <     n     &&     arr  [  i  ]     !=     arr  [  correctpos  ])     {      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr       i       correctpos  );      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }      Console  .  Write  (  'nAfter sort : '  );      for     (  int     index     =     0  ;     index      <     n  ;     index  ++  )      Console  .  Write  (  arr  [  index  ]     +     ' '  );      }      static     void     swap  (  int  []     arr       int     i       int     correctpos  )      {      // swap elements with their correct indexes      int     temp     =     arr  [  i  ];      arr  [  i  ]     =     arr  [  correctpos  ];      arr  [  correctpos  ]     =     temp  ;      }      static     public     void     Main  ()      {      // Code      int  []     arr     =     {     3       2       4       5       1     };      int     n     =     arr  .  Length  ;      Console  .  Write  (  'Before sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      Console  .  Write  (  arr  [  i  ]     +     ' '  );      CycleSort  (  arr       n  );      }   }   // This code is contributed by devendra solunke   
JavaScript
   // JavaScript code for the above code   function     cyclicSort  (  arr       n  )     {      var     i     =     0  ;      while     (  i      <     n  )      {          // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      let     correct     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]     !==     arr  [  correct  ])      {          // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      [  arr  [  i  ]     arr  [  correct  ]]     =     [  arr  [  correct  ]     arr  [  i  ]];      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }   }   function     printArray  (  arr       size  )     {      for     (  var     i     =     0  ;     i      <     size  ;     i  ++  )     {      console  .  log  (  arr  [  i  ]     +     ' '  );      }      console  .  log  (  'n'  );   }   var     arr     =     [  3       2       4       5       1  ];   var     n     =     arr  .  length  ;   console  .  log  (  'Before sorting array: n'  );   printArray  (  arr       n  );   cyclicSort  (  arr       n  );   console  .  log  (  'Sorted array: n'  );   printArray  (  arr       n  );   // This Code is Contributed by Prasad Kandekar(prasad264)   

Výstup
Before sorting array: 3 2 4 5 1 Sorted array: 1 2 3 4 5  

Analýza časové složitosti:

  • Nejhorší případ: Na) 
  • Průměrný případ: Na) 
  • Nejlepší případ: Na)

Pomocný prostor: O(1)

Výhoda cyklického řazení:

  1. Není potřeba žádné další úložiště.
  2.  Algoritmus řazení na místě.
  3.  Minimální počet zápisů do paměti
  4.  Cyklické řazení je užitečné, když je pole uloženo v EEPROM nebo FLASH. 

Nevýhoda  cyklického řazení:

  1.  Většinou se nepoužívá.
  2.  Má větší časovou složitost o (n^2)
  3.  Nestabilní algoritmus řazení.

Aplikace  cyklického řazení:

  • Tento třídicí algoritmus se nejlépe hodí pro situace, kde jsou operace zápisu do paměti nebo swapování nákladné.
  • Užitečné pro složité problémy. 
     
Vytvořit kvíz