Comptez le maximum de points sur la même ligne

Comptez le maximum de points sur la même ligne
Essayez-le sur GfG Practice

Étant donné n point sur un plan 2D sous forme de paire de coordonnées (x y), nous devons trouver le nombre maximum de points qui se trouvent sur la même ligne.

Exemples : 

Saisir : points[] = {-1 1} {0 0} {1 1}
{2 2} {3 3} {3 4}
Sortir : 4
Puis nombre maximum de points qui se trouvent sur le même
la ligne est 4, ces points sont {0 0} {1 1} {2 2}
{3 3}

Pour chaque point p, calculez sa pente avec d'autres points et utilisez une carte pour enregistrer combien de points ont la même pente grâce à laquelle nous pouvons savoir combien de points sont sur la même ligne avec p comme point unique. Pour chaque point, continuez à faire la même chose et mettez à jour le nombre maximum de points trouvé jusqu'à présent.

Certaines choses à noter lors de la mise en œuvre sont : 

  1. si deux points sont (x1 y1) et (x2 y2) alors leur pente sera (y2 – y1) / (x2 – x1) qui peut être une valeur double et causer des problèmes de précision. Pour nous débarrasser des problèmes de précision, nous traitons la pente comme une paire ((y2 - y1) (x2 – x1)) au lieu d'un rapport et réduisons la paire de leur pgcd avant de l'insérer dans la carte. Ci-dessous, les points de code verticaux ou répétés sont traités séparément.
  2. Si nous utilisons Hash Map ou Dictionary pour stocker la paire de pentes, alors la complexité temporelle totale de la solution sera O(n^2) et la complexité spatiale sera O(n).
C++
   /* C/C++ program to find maximum number of point   which lie on same line */   #include          #include          using     namespace     std  ;   // method to find maximum collinear point   int     maxPointOnSameLine  (  vector   <     pair   <  int       int  >     >     points  )   {      int     N     =     points  .  size  ();      if     (  N      <     2  )      return     N  ;      int     maxPoint     =     0  ;      int     curMax       overlapPoints       verticalPoints  ;      // here since we are using unordered_map       // which is based on hash function       //But by default we don't have hash function for pairs      //so we'll use hash function defined in Boost library      unordered_map   <  pair   <  int       int  >       int    boost  ::      hash   <  pair   <  int       int  >     >     >     slopeMap  ;      // looping for each point      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      {      curMax     =     overlapPoints     =     verticalPoints     =     0  ;      // looping from i + 1 to ignore same pair again      for     (  int     j     =     i     +     1  ;     j      <     N  ;     j  ++  )      {      // If both point are equal then just      // increase overlapPoint count      if     (  points  [  i  ]     ==     points  [  j  ])      overlapPoints  ++  ;      // If x co-ordinate is same then both      // point are vertical to each other      else     if     (  points  [  i  ].  first     ==     points  [  j  ].  first  )      verticalPoints  ++  ;      else      {      int     yDif     =     points  [  j  ].  second     -     points  [  i  ].  second  ;      int     xDif     =     points  [  j  ].  first     -     points  [  i  ].  first  ;      int     g     =     __gcd  (  xDif       yDif  );      // reducing the difference by their gcd      yDif     /=     g  ;      xDif     /=     g  ;      // increasing the frequency of current slope      // in map      slopeMap  [  make_pair  (  yDif       xDif  )]  ++  ;      curMax     =     max  (  curMax       slopeMap  [  make_pair  (  yDif       xDif  )]);      }      curMax     =     max  (  curMax       verticalPoints  );      }      // updating global maximum by current point's maximum      maxPoint     =     max  (  maxPoint       curMax     +     overlapPoints     +     1  );      // printf('maximum collinear point       // which contains current point       // are : %dn' curMax + overlapPoints + 1);      slopeMap  .  clear  ();      }      return     maxPoint  ;   }   // Driver code   int     main  ()   {      const     int     N     =     6  ;      int     arr  [  N  ][  2  ]     =     {{  -1       1  }     {  0       0  }     {  1       1  }     {  2       2  }      {  3       3  }     {  3       4  }};      vector   <     pair   <  int       int  >     >     points  ;      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      points  .  push_back  (  make_pair  (  arr  [  i  ][  0  ]     arr  [  i  ][  1  ]));      cout      < <     maxPointOnSameLine  (  points  )      < <     endl  ;      return     0  ;   }   
Java
   /* Java program to find maximum number of point   which lie on same line */   import     java.util.*  ;   class   GFG     {      static     int     gcd  (  int     p       int     q  )      {      if     (  q     ==     0  )     {      return     p  ;      }      int     r     =     p     %     q  ;      return     gcd  (  q       r  );      }      static     int     N     =     6  ;      // method to find maximum collinear point      static     int     maxPointOnSameLine  (  int  [][]     points  )      {      if     (  N      <     2  )      return     N  ;      int     maxPoint     =     0  ;      int     curMax       overlapPoints       verticalPoints  ;      HashMap   <  String       Integer  >     slopeMap     =     new     HashMap   <>  ();      // looping for each point      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )     {      curMax     =     overlapPoints     =     verticalPoints     =     0  ;      // looping from i + 1 to ignore same pair again      for     (  int     j     =     i     +     1  ;     j      <     N  ;     j  ++  )     {      // If both point are equal then just      // increase overlapPoint count      if     (  points  [  i  ][  0  ]     ==     points  [  j  ][  0  ]      &&     points  [  i  ][  1  ]     ==     points  [  j  ][  1  ]  )      overlapPoints  ++  ;      // If x co-ordinate is same then both      // point are vertical to each other      else     if     (  points  [  i  ][  0  ]     ==     points  [  j  ][  0  ]  )      verticalPoints  ++  ;      else     {      int     yDif     =     points  [  j  ][  1  ]     -     points  [  i  ][  1  ]  ;      int     xDif     =     points  [  j  ][  0  ]     -     points  [  i  ][  0  ]  ;      int     g     =     gcd  (  xDif       yDif  );      // reducing the difference by their gcd      yDif     /=     g  ;      xDif     /=     g  ;      // Convert the pair into a string to use      // as dictionary key      String     pair     =     (  yDif  )     +     ' '     +     (  xDif  );      if     (  !  slopeMap  .  containsKey  (  pair  ))      slopeMap  .  put  (  pair       0  );      // increasing the frequency of current      // slope in map      slopeMap  .  put  (  pair        slopeMap  .  get  (  pair  )     +     1  );      curMax     =     Math  .  max  (  curMax        slopeMap  .  get  (  pair  ));      }      curMax     =     Math  .  max  (  curMax       verticalPoints  );      }      // updating global maximum by current point's      // maximum      maxPoint     =     Math  .  max  (  maxPoint        curMax     +     overlapPoints     +     1  );      slopeMap  .  clear  ();      }      return     maxPoint  ;      }      public     static     void     main  (  String  []     args  )      {      int     points  [][]     =     {     {     -  1       1     }     {     0       0     }     {     1       1     }      {     2       2     }     {     3       3     }     {     3       4     }     };      System  .  out  .  println  (  maxPointOnSameLine  (  points  ));      }   }   
Python
   # python3 program to find maximum number of 2D points that lie on the same line.   from   collections   import   defaultdict   from   math   import   gcd   from   typing   import   DefaultDict     List     Tuple   IntPair   =   Tuple  [  int     int  ]   def   normalized_slope  (  a  :   IntPair     b  :   IntPair  )   ->   IntPair  :      '''    Returns normalized (rise run) tuple. We won't return the actual rise/run    result in order to avoid floating point math which leads to faulty    comparisons.    See    https://en.wikipedia.org/wiki/Floating-point_arithmetic#Accuracy_problems    '''   run   =   b  [  0  ]   -   a  [  0  ]   # normalize undefined slopes to (1 0)   if   run   ==   0  :   return   (  1     0  )   # normalize to left-to-right   if   run    <   0  :   a     b   =   b     a   run   =   b  [  0  ]   -   a  [  0  ]   rise   =   b  [  1  ]   -   a  [  1  ]   # Normalize by greatest common divisor.   # math.gcd only works on positive numbers.   gcd_   =   gcd  (  abs  (  rise  )   run  )   return   (   rise   //   gcd_     run   //   gcd_     )   def   maximum_points_on_same_line  (  points  :   List  [  List  [  int  ]])   ->   int  :   # You need at least 3 points to potentially have non-collinear points.   # For [0 2] points all points are on the same line.   if   len  (  points  )    <   3  :   return   len  (  points  )   # Note that every line we find will have at least 2 points.   # There will be at least one line because len(points) >= 3.   # Therefore it's safe to initialize to 0.   max_val   =   0   for   a_index   in   range  (  0     len  (  points  )   -   1  ):   # All lines in this iteration go through point a.   # Note that lines a-b and a-c cannot be parallel.   # Therefore if lines a-b and a-c have the same slope they're the same   # line.   a   =   tuple  (  points  [  a_index  ])   # Fresh lines already have a so default=1   slope_counts  :   DefaultDict  [  IntPair     int  ]   =   defaultdict  (  lambda  :   1  )   for   b_index   in   range  (  a_index   +   1     len  (  points  )):   b   =   tuple  (  points  [  b_index  ])   slope_counts  [  normalized_slope  (  a     b  )]   +=   1   max_val   =   max  (   max_val     max  (  slope_counts  .  values  ())   )   return   max_val   print  (  maximum_points_on_same_line  ([   [  -  1     1  ]   [  0     0  ]   [  1     1  ]   [  2     2  ]   [  3     3  ]   [  3     4  ]   ]))   # This code is contributed by Jose Alvarado Torre   
C#
   /* C# program to find maximum number of point   which lie on same line */   using     System  ;   using     System.Collections.Generic  ;   class     GFG     {      static     int     gcd  (  int     p       int     q  )      {      if     (  q     ==     0  )     {      return     p  ;      }      int     r     =     p     %     q  ;      return     gcd  (  q       r  );      }      static     int     N     =     6  ;      // method to find maximum collinear point      static     int     maxPointOnSameLine  (  int  [     ]     points  )      {      if     (  N      <     2  )      return     N  ;      int     maxPoint     =     0  ;      int     curMax       overlapPoints       verticalPoints  ;      Dictionary   <  string       int  >     slopeMap      =     new     Dictionary   <  string       int  >  ();      // looping for each point      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )     {      curMax     =     overlapPoints     =     verticalPoints     =     0  ;      // looping from i + 1 to ignore same pair again      for     (  int     j     =     i     +     1  ;     j      <     N  ;     j  ++  )     {      // If both point are equal then just      // increase overlapPoint count      if     (  points  [  i       0  ]     ==     points  [  j       0  ]      &&     points  [  i       1  ]     ==     points  [  j       1  ])      overlapPoints  ++  ;      // If x co-ordinate is same then both      // point are vertical to each other      else     if     (  points  [  i       0  ]     ==     points  [  j       0  ])      verticalPoints  ++  ;      else     {      int     yDif     =     points  [  j       1  ]     -     points  [  i       1  ];      int     xDif     =     points  [  j       0  ]     -     points  [  i       0  ];      int     g     =     gcd  (  xDif       yDif  );      // reducing the difference by their gcd      yDif     /=     g  ;      xDif     /=     g  ;      // Convert the pair into a string to use      // as dictionary key      string     pair     =     Convert  .  ToString  (  yDif  )      +     ' '      +     Convert  .  ToString  (  xDif  );      if     (  !  slopeMap  .  ContainsKey  (  pair  ))      slopeMap  [  pair  ]     =     0  ;      // increasing the frequency of current      // slope in map      slopeMap  [  pair  ]  ++  ;      curMax      =     Math  .  Max  (  curMax       slopeMap  [  pair  ]);      }      curMax     =     Math  .  Max  (  curMax       verticalPoints  );      }      // updating global maximum by current point's      // maximum      maxPoint     =     Math  .  Max  (  maxPoint        curMax     +     overlapPoints     +     1  );      slopeMap  .  Clear  ();      }      return     maxPoint  ;      }      // Driver code      public     static     void     Main  (  string  []     args  )      {      int  [     ]     points     =     {     {     -  1       1     }     {     0       0     }     {     1       1     }      {     2       2     }     {     3       3     }     {     3       4     }     };      Console  .  WriteLine  (  maxPointOnSameLine  (  points  ));      }   }   // This code is contributed by phasing17   
JavaScript
   /* JavaScript program to find maximum number of point   which lie on same line */   // Function to find gcd of two numbers   let     gcd     =     function  (  a       b  )     {      if     (  !  b  )     {      return     a  ;      }      return     gcd  (  b       a     %     b  );   }   // method to find maximum collinear point   function     maxPointOnSameLine  (  points  ){      let     N     =     points  .  length  ;      if     (  N      <     2  ){      return     N  ;      }         let     maxPoint     =     0  ;      let     curMax       overlapPoints       verticalPoints  ;      // Creating a map for storing the data.       let     slopeMap     =     new     Map  ();      // looping for each point      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  )      {      curMax     =     0  ;      overlapPoints     =     0  ;      verticalPoints     =     0  ;          // looping from i + 1 to ignore same pair again      for     (  let     j     =     i     +     1  ;     j      <     N  ;     j  ++  )      {      // If both point are equal then just      // increase overlapPoint count      if     (  points  [  i  ]     ===     points  [  j  ]){      overlapPoints  ++  ;      }          // If x co-ordinate is same then both      // point are vertical to each other      else     if     (  points  [  i  ][  0  ]     ===     points  [  j  ][  0  ]){      verticalPoints  ++  ;      }      else  {      let     yDif     =     points  [  j  ][  1  ]     -     points  [  i  ][  1  ];      let     xDif     =     points  [  j  ][  0  ]     -     points  [  i  ][  0  ];      let     g     =     gcd  (  xDif       yDif  );      // reducing the difference by their gcd      yDif     =     Math  .  floor  (  yDif  /  g  );      xDif     =     Math  .  floor  (  xDif  /  g  );          // increasing the frequency of current slope.       let     tmp     =     [  yDif       xDif  ];      if  (  slopeMap  .  has  (  tmp  .  join  (  ''  ))){      slopeMap  .  set  (  tmp  .  join  (  ''  )     slopeMap  .  get  (  tmp  .  join  (  ''  ))     +     1  );      }      else  {      slopeMap  .  set  (  tmp  .  join  (  ''  )     1  );      }          curMax     =     Math  .  max  (  curMax       slopeMap  .  get  (  tmp  .  join  (  ''  )));      }          curMax     =     Math  .  max  (  curMax       verticalPoints  );      }      // updating global maximum by current point's maximum      maxPoint     =     Math  .  max  (  maxPoint       curMax     +     overlapPoints     +     1  );          // printf('maximum collinear point      // which contains current point      // are : %dn' curMax + overlapPoints + 1);      slopeMap  .  clear  ();      }          return     maxPoint  ;   }   // Driver code   {      let     N     =     6  ;      let     arr     =     [[  -  1       1  ]     [  0       0  ]     [  1       1  ]     [  2       2  ]      [  3       3  ]     [  3       4  ]];      console  .  log  (  maxPointOnSameLine  (  arr  ));   }   // The code is contributed by Gautam goel (gautamgoel962)   

Sortir
4 

Complexité temporelle : Sur 2 calme) où n désignant la longueur de la chaîne.
Espace auxiliaire : O(n)