Nombre més petit amb un recompte i suma de dígits

Nombre més petit amb un recompte i suma de dígits
Proveu -ho a la pràctica GFG

Donat dos nombres enters s i d Troba el més petit Número possible que té exactament D dígits i un suma de dígits igual a s .
Torneu el número com a corda . Si no existeix aquest número, torna '-1' .

Exemples:

Entrada: s = 9 d = 2
Sortida: 18
Explicació: 18 és el nombre més petit possible amb la suma de dígits = 9 i els dígits totals = 2.

Entrada: S = 20 d = 3
Sortida: 299
Explicació: 299 és el nombre més petit possible amb la suma de dígits = 20 i dígits totals = 3.

Entrada: s = 1 d = 1
Sortida: 1
Explicació: 1 és el nombre més petit possible amb la suma de dígits = 1 i dígits totals = 1.

Taula de contingut

[Enfocament de força brute] iterate seqüencialment - o (d*(10^d)) temps i O (1) Espai

Ja que els números són seqüencials el enfocament de la força bruta itera de la més petit number de dígits al més gran comprovant cadascun. Per cada número, calculem el suma dels seus dígits i retorneu la primera coincidència vàlida assegurant que el nombre més petit possible estigui seleccionat. Si no existeix cap número vàlid, tornem '-1' .

C++
   // C++ program to find the smallest d-digit   // number with the given sum using    // a brute force approach   #include          using     namespace     std  ;   string     smallestNumber  (  int     s       int     d  )     {          // The smallest d-digit number is 10^(d-1)      int     start     =     pow  (  10       d     -     1  );          // The largest d-digit number is 10^d - 1      int     end     =     pow  (  10       d  )     -     1  ;      // Iterate through all d-digit numbers      for     (  int     num     =     start  ;     num      <=     end  ;     num  ++  )     {          int     sum     =     0       x     =     num  ;      // Calculate sum of digits      while     (  x     >     0  )     {      sum     +=     x     %     10  ;      x     /=     10  ;      }      // If sum matches return the number      // as a string      if     (  sum     ==     s  )     {      return     to_string  (  num  );      }      }      // If no valid number is found return '-1'      return     '-1'  ;   }   // Driver Code   int     main  ()     {          int     s     =     9       d     =     2  ;          cout      < <     smallestNumber  (  s       d  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find the smallest d-digit   // number with the given sum using    // a brute force approach   import     java.util.*  ;   class   GfG     {          static     String     smallestNumber  (  int     s       int     d  )     {          // The smallest d-digit number is 10^(d-1)      int     start     =     (  int  )     Math  .  pow  (  10       d     -     1  );          // The largest d-digit number is 10^d - 1      int     end     =     (  int  )     Math  .  pow  (  10       d  )     -     1  ;      // Iterate through all d-digit numbers      for     (  int     num     =     start  ;     num      <=     end  ;     num  ++  )     {          int     sum     =     0       x     =     num  ;      // Calculate sum of digits      while     (  x     >     0  )     {      sum     +=     x     %     10  ;      x     /=     10  ;      }      // If sum matches return the number      // as a string      if     (  sum     ==     s  )     {      return     Integer  .  toString  (  num  );      }      }      // If no valid number is found return '-1'      return     '-1'  ;      }      // Driver Code      public     static     void     main  (  String  []     args  )     {          int     s     =     9       d     =     2  ;          System  .  out  .  println  (  smallestNumber  (  s       d  ));      }   }   
Python
   # Python program to find the smallest d-digit   # number with the given sum using    # a brute force approach   def   smallestNumber  (  s     d  ):   # The smallest d-digit number is 10^(d-1)   start   =   10  **  (  d   -   1  )   # The largest d-digit number is 10^d - 1   end   =   10  **  d   -   1   # Iterate through all d-digit numbers   for   num   in   range  (  start     end   +   1  ):   sum_digits   =   0   x   =   num   # Calculate sum of digits   while   x   >   0  :   sum_digits   +=   x   %   10   x   //=   10   # If sum matches return the number   # as a string   if   sum_digits   ==   s  :   return   str  (  num  )   # If no valid number is found return '-1'   return   '-1'   # Driver Code   if   __name__   ==   '__main__'  :   s     d   =   9     2   print  (  smallestNumber  (  s     d  ))   
C#
   // C# program to find the smallest d-digit   // number with the given sum using    // a brute force approach   using     System  ;   class     GfG     {          static     string     smallestNumber  (  int     s       int     d  )     {          // The smallest d-digit number is 10^(d-1)      int     start     =     (  int  )  Math  .  Pow  (  10       d     -     1  );          // The largest d-digit number is 10^d - 1      int     end     =     (  int  )  Math  .  Pow  (  10       d  )     -     1  ;      // Iterate through all d-digit numbers      for     (  int     num     =     start  ;     num      <=     end  ;     num  ++  )     {          int     sum     =     0       x     =     num  ;      // Calculate sum of digits      while     (  x     >     0  )     {      sum     +=     x     %     10  ;      x     /=     10  ;      }      // If sum matches return the number      // as a string      if     (  sum     ==     s  )     {      return     num  .  ToString  ();      }      }      // If no valid number is found return '-1'      return     '-1'  ;      }      // Driver Code      public     static     void     Main  ()     {          int     s     =     9       d     =     2  ;          Console  .  WriteLine  (  smallestNumber  (  s       d  ));      }   }   
JavaScript
   // JavaScript program to find the smallest d-digit   // number with the given sum using    // a brute force approach   function     smallestNumber  (  s       d  )     {          // The smallest d-digit number is 10^(d-1)      let     start     =     Math  .  pow  (  10       d     -     1  );          // The largest d-digit number is 10^d - 1      let     end     =     Math  .  pow  (  10       d  )     -     1  ;      // Iterate through all d-digit numbers      for     (  let     num     =     start  ;     num      <=     end  ;     num  ++  )     {          let     sum     =     0       x     =     num  ;      // Calculate sum of digits      while     (  x     >     0  )     {      sum     +=     x     %     10  ;      x     =     Math  .  floor  (  x     /     10  );      }      // If sum matches return the number      // as a string      if     (  sum     ===     s  )     {      return     num  .  toString  ();      }      }      // If no valid number is found return '-1'      return     '-1'  ;   }   // Driver Code   let     s     =     9       d     =     2  ;   console  .  log  (  smallestNumber  (  s       d  ));   

Producció
18  

[Aproximació esperada] Utilitzant la tècnica Greedy - O (D) Temps i O (1) Espai

L'enfocament garanteix el dígit més esquerre no és zero Així nosaltres Reserva 1 per a això i distribuir la suma restant de de dreta a esquerra per formar el nombre més petit possible. El Aproximació cobdària ajuda a situar els valors més grans possibles (fins a 9) al Posicions més dretes Per mantenir el nombre petit.

Passos per implementar la idea anterior:

  • Comproveu les restriccions per assegurar -vos a suma vàlida s es pot formar mitjançant D dígits Altrament, tornar '-1' .
  • Inicialitzar resultat Com a cadena de D '0's i Reserva 1 per al Digit més esquerre reduint S per 1 .
  • Traverse de de dreta a esquerra i col·locar el més gran dígit possible ( <= 9) mentre s’actualitza s En conseqüència.
  • Si s <= 9 Col·loqueu el seu valor a la posició actual i fixeu -lo S = 0 per aturar les actualitzacions posteriors.
  • Assignar el Digit més esquerre afegint el queden s Per assegurar -se que quedi no zero .
  • Convertir el resultat Cadena al format requerit i retornar És la sortida final.
C++
   // C++ program to find the smallest d-digit    // number with the given sum using   // Greedy Technique   #include          using     namespace     std  ;   string     smallestNumber  (  int     s       int     d  )     {          // If sum is too small or too large       // for d digits      if     (  s      <     1     ||     s     >     9     *     d  )     {      return     '-1'  ;      }      string     result  (  d       '0'  );             // Reserve 1 for the leftmost digit      s  --  ;         // Fill digits from right to left      for     (  int     i     =     d     -     1  ;     i     >     0  ;     i  --  )     {          // Place the largest possible value  <= 9      if     (  s     >     9  )     {      result  [  i  ]     =     '9'  ;      s     -=     9  ;      }     else     {      result  [  i  ]     =     '0'     +     s  ;      s     =     0  ;      }      }      // Place the leftmost digit ensuring      // it's non-zero      result  [  0  ]     =     '1'     +     s  ;          return     result  ;   }   // Driver Code   int     main  ()     {          int     s     =     9       d     =     2  ;          cout      < <     smallestNumber  (  s       d  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find the smallest d-digit    // number with the given sum using   // Greedy Technique   import     java.util.*  ;   class   GfG     {          static     String     smallestNumber  (  int     s       int     d  )     {          // If sum is too small or too large       // for d digits      if     (  s      <     1     ||     s     >     9     *     d  )     {      return     '-1'  ;      }      char  []     result     =     new     char  [  d  ]  ;      Arrays  .  fill  (  result       '0'  );          // Reserve 1 for the leftmost digit      s  --  ;      // Fill digits from right to left      for     (  int     i     =     d     -     1  ;     i     >     0  ;     i  --  )     {          // Place the largest possible value  <= 9      if     (  s     >     9  )     {      result  [  i  ]     =     '9'  ;      s     -=     9  ;      }     else     {      result  [  i  ]     =     (  char  )     (  '0'     +     s  );      s     =     0  ;      }      }      // Place the leftmost digit ensuring      // it's non-zero      result  [  0  ]     =     (  char  )     (  '1'     +     s  );          return     new     String  (  result  );      }      // Driver Code      public     static     void     main  (  String  []     args  )     {          int     s     =     9       d     =     2  ;          System  .  out  .  println  (  smallestNumber  (  s       d  ));      }   }   
Python
   # Python program to find the smallest d-digit    # number with the given sum using   # Greedy Technique   def   smallestNumber  (  s     d  ):   # If sum is too small or too large    # for d digits   if   s    <   1   or   s   >   9   *   d  :   return   '-1'   result   =   [  '0'  ]   *   d   # Reserve 1 for the leftmost digit   s   -=   1   # Fill digits from right to left   for   i   in   range  (  d   -   1     0     -  1  ):   # Place the largest possible value  <= 9   if   s   >   9  :   result  [  i  ]   =   '9'   s   -=   9   else  :   result  [  i  ]   =   str  (  s  )   s   =   0   # Place the leftmost digit ensuring   # it's non-zero   result  [  0  ]   =   str  (  1   +   s  )   return   ''  .  join  (  result  )   # Driver Code   if   __name__   ==   '__main__'  :   s     d   =   9     2   print  (  smallestNumber  (  s     d  ))   
C#
   // C# program to find the smallest d-digit    // number with the given sum using   // Greedy Technique   using     System  ;   class     GfG     {      static     string     smallestNumber  (  int     s       int     d  )     {          // If sum is too small or too large       // for d digits      if     (  s      <     1     ||     s     >     9     *     d  )     {      return     '-1'  ;      }      char  []     result     =     new     char  [  d  ];      Array  .  Fill  (  result       '0'  );      // Reserve 1 for the leftmost digit      s  --  ;      // Fill digits from right to left      for     (  int     i     =     d     -     1  ;     i     >     0  ;     i  --  )     {          // Place the largest possible value  <= 9      if     (  s     >     9  )     {      result  [  i  ]     =     '9'  ;      s     -=     9  ;      }     else     {      result  [  i  ]     =     (  char  )     (  '0'     +     s  );      s     =     0  ;      }      }      // Place the leftmost digit ensuring      // it's non-zero      result  [  0  ]     =     (  char  )     (  '1'     +     s  );          return     new     string  (  result  );      }      // Driver Code      static     void     Main  ()     {          int     s     =     9       d     =     2  ;          Console  .  WriteLine  (  smallestNumber  (  s       d  ));      }   }   
JavaScript
   // JavaScript program to find the smallest d-digit    // number with the given sum using   // Greedy Technique   function     smallestNumber  (  s       d  )     {          // If sum is too small or too large       // for d digits      if     (  s      <     1     ||     s     >     9     *     d  )     {      return     '-1'  ;      }      let     result     =     Array  (  d  ).  fill  (  '0'  );         // Reserve 1 for the leftmost digit      s  --  ;      // Fill digits from right to left      for     (  let     i     =     d     -     1  ;     i     >     0  ;     i  --  )     {          // Place the largest possible value  <= 9      if     (  s     >     9  )     {      result  [  i  ]     =     '9'  ;      s     -=     9  ;      }     else     {      result  [  i  ]     =     String  (  s  );      s     =     0  ;      }      }      // Place the leftmost digit ensuring      // it's non-zero      result  [  0  ]     =     String  (  1     +     s  );          return     result  .  join  (  ''  );   }   // Driver Code   let     s     =     9       d     =     2  ;   console  .  log  (  smallestNumber  (  s       d  ));   

Producció
18