Nombre més petit divisible pels n primers nombres

Nombre més petit divisible pels n primers nombres
Prova-ho a GfG Practice

Donat un número n Trobeu el nombre més petit divisible per cada nombre d'1 a n.
Exemples:  
 

 Input : n = 4 Output : 12 Explanation : 12 is the smallest numbers divisible by all numbers from 1 to 4 Input : n = 10 Output : 2520 Input : n = 20 Output : 232792560  


Si observeu atentament el anys ha de ser el MCM dels nombres de l'1 al n
Per trobar el MCM de nombres de l'1 a n - 
 

  1. Inicialitzar ans = 1. 
     
  2. Itera sobre tots els nombres des de i = 1 fins a i = n. 
    A la iteració ans = MCM(1 2 …….. i) . Això es pot fer fàcilment com MCM(1 2 …. i) = MCM(ans i)
    Per tant, a la i iteració només hem de fer - 
     
 ans = LCM(ans i) = ans * i / gcd(ans i) [Using the below property a*b = gcd(ab) * lcm(ab)]  


Nota: En codi C++, la resposta supera ràpidament el límit d'enters fins i tot el límit llarg llarg.
A continuació es mostra la implementació de la lògica. 
 

C++
   // C++ program to find smallest number evenly divisible by    // all numbers 1 to n   #include       using     namespace     std  ;   // Function returns the lcm of first n numbers   long     long     lcm  (  long     long     n  )   {      long     long     ans     =     1  ;         for     (  long     long     i     =     1  ;     i      <=     n  ;     i  ++  )      ans     =     (  ans     *     i  )  /  (  __gcd  (  ans       i  ));      return     ans  ;   }   // Driver program to test the above function   int     main  ()      {      long     long     n     =     20  ;      cout      < <     lcm  (  n  );      return     0  ;   }   
Java
   // Java program to find the smallest number evenly divisible by    // all numbers 1 to n      class   GFG  {   static     long     gcd  (  long     a       long     b  )   {      if  (  a  %  b     !=     0  )         return     gcd  (  b    a  %  b  );      else         return     b  ;   }   // Function returns the lcm of first n numbers   static     long     lcm  (  long     n  )   {      long     ans     =     1  ;         for     (  long     i     =     1  ;     i      <=     n  ;     i  ++  )      ans     =     (  ans     *     i  )  /  (  gcd  (  ans       i  ));      return     ans  ;   }       // Driver program to test the above function   public     static     void     main  (  String     []  args  )      {      long     n     =     20  ;      System  .  out  .  println  (  lcm  (  n  ));   }   }   
Python
   # Python program to find the smallest number evenly    # divisible by all number 1 to n    import   math   # Returns the lcm of first n numbers    def   lcm  (  n  ):   ans   =   1   for   i   in   range  (  1     n   +   1  ):   ans   =   int  ((  ans   *   i  )  /  math  .  gcd  (  ans     i  ))   return   ans   # main    n   =   20   print   (  lcm  (  n  ))   
C#
   // C# program to find smallest number   // evenly divisible by    // all numbers 1 to n    using     System  ;   public     class     GFG  {      static     long     gcd  (  long     a       long     b  )      {      if  (  a  %  b     !=     0  )         return     gcd  (  b    a  %  b  );      else      return     b  ;      }      // Function returns the lcm of first n numbers    static     long     lcm  (  long     n  )      {         long     ans     =     1  ;         for     (  long     i     =     1  ;     i      <=     n  ;     i  ++  )         ans     =     (  ans     *     i  )  /  (  gcd  (  ans       i  ));         return     ans  ;      }      // Driver program to test the above function       static     public     void     Main     (){      long     n     =     20  ;         Console  .  WriteLine  (  lcm  (  n  ));         }   //This code is contributed by akt_mit    }   
Javascript
   // Javascript program to find the smallest number evenly divisible by    // all numbers 1 to n   function     gcd  (  a       b  )   {      if  (  a  %  b     !=     0  )         return     gcd  (  b    a  %  b  );      else         return     b  ;   }       // Function returns the lcm of first n numbers   function     lcm  (  n  )   {      let     ans     =     1  ;         for     (  let     i     =     1  ;     i      <=     n  ;     i  ++  )      ans     =     (  ans     *     i  )  /  (  gcd  (  ans       i  ));      return     ans  ;   }       // function call          let     n     =     20  ;      console  .  log  (  lcm  (  n  ));       
PHP
      // Note: This code is not working on GFG-IDE    // because gmp libraries are not supported   // PHP program to find smallest number    // evenly divisible by all numbers 1 to n   // Function returns the lcm    // of first n numbers   function   lcm  (  $n  )   {   $ans   =   1  ;   for   (  $i   =   1  ;   $i    <=   $n  ;   $i  ++  )   $ans   =   (  $ans   *   $i  )   /   (  gmp_gcd  (  strval  (  ans  )   strval  (  i  )));   return   $ans  ;   }   // Driver Code   $n   =   20  ;   echo   lcm  (  $n  );   // This code is contributed by mits   ?>   

Sortida
232792560 

Complexitat temporal: O(n log2n) ja que la complexitat de _gcd(ab) en c++ és log2n  i s'executa n vegades en un bucle.
Espai auxiliar: O(1)
La solució anterior funciona bé per a una única entrada. Però si tenim diverses entrades, és una bona idea utilitzar Sieve of Eratòstenes per emmagatzemar tots els factors primers. Consulteu l'article següent per a l'enfocament basat en el tamís. 

Enfocament: [Utilitzar Sedós d'Eratostenes ]

Per resoldre el problema de trobar el nombre més petit divisible pels primers 'n' nombres d'una manera més eficient podem utilitzar el tamís d'Eratòstenes per calcular prèviament els nombres primers fins a 'n'. Aleshores podem utilitzar aquests nombres primers per calcular el mínim comú múltiple (LCM) de manera més eficient considerant les potències més altes de cada primer que són menors o iguals a 'n'.

Enfocament pas a pas:

  • Genera nombres primers fins a n: Utilitzeu el sedàs d'Eràtòstenes per trobar tots els nombres primers fins a 'n'.
  • Calculeu el MCM utilitzant aquests nombres primers: Per a cada primer, determineu la potència més alta d'aquest primer que és menor o igual a 'n'. Multipliqueu aquests poders més alts junts per obtenir el LCM

A continuació es mostra la implementació de l'enfocament anterior:

C++
   #include         #include          #include         using     namespace     std  ;   // Function to generate all prime numbers up to n using the   // Sieve of Eratosthenes   vector   <  int  >     sieve_of_eratosthenes  (  int     n  )   {      vector   <  bool  >     is_prime  (  n     +     1       true  );      int     p     =     2  ;      while     (  p     *     p      <=     n  )     {      if     (  is_prime  [  p  ])     {      for     (  int     i     =     p     *     p  ;     i      <=     n  ;     i     +=     p  )     {      is_prime  [  i  ]     =     false  ;      }      }      ++  p  ;      }      vector   <  int  >     prime_numbers  ;      for     (  int     p     =     2  ;     p      <=     n  ;     ++  p  )     {      if     (  is_prime  [  p  ])     {      prime_numbers  .  push_back  (  p  );      }      }      return     prime_numbers  ;   }   // Function to find the smallest number divisible by all   // numbers from 1 to n   long     long     smallest_multiple  (  int     n  )   {      vector   <  int  >     primes     =     sieve_of_eratosthenes  (  n  );      long     long     lcm     =     1  ;      for     (  int     prime     :     primes  )     {      // Calculate the highest power of the prime that is      //  <= n      int     power     =     1  ;      while     (  pow  (  prime       power     +     1  )      <=     n  )     {      ++  power  ;      }      lcm     *=     pow  (  prime       power  );      }      return     lcm  ;   }   int     main  ()   {      int     n     =     20  ;      cout      < <     smallest_multiple  (  n  )      < <  endl  ;      return     0  ;   }   
Java
   import     java.util.ArrayList  ;   import     java.util.List  ;   public     class   SmallestMultiple     {      // Function to generate all prime numbers up to n using      // the Sieve of Eratosthenes      public     static     List   <  Integer  >     sieveOfEratosthenes  (  int     n  )      {      boolean  []     isPrime     =     new     boolean  [  n     +     1  ]  ;      for     (  int     i     =     0  ;     i      <=     n  ;     i  ++  )     {      isPrime  [  i  ]     =     true  ;      }      int     p     =     2  ;      while     (  p     *     p      <=     n  )     {      if     (  isPrime  [  p  ]  )     {      for     (  int     i     =     p     *     p  ;     i      <=     n  ;     i     +=     p  )     {      isPrime  [  i  ]     =     false  ;      }      }      p  ++  ;      }      List   <  Integer  >     primeNumbers     =     new     ArrayList   <>  ();      for     (  int     i     =     2  ;     i      <=     n  ;     i  ++  )     {      if     (  isPrime  [  i  ]  )     {      primeNumbers  .  add  (  i  );      }      }      return     primeNumbers  ;      }      // Function to find the smallest number divisible by all      // numbers from 1 to n      public     static     long     smallestMultiple  (  int     n  )      {      List   <  Integer  >     primes     =     sieveOfEratosthenes  (  n  );      long     lcm     =     1  ;      for     (  int     prime     :     primes  )     {      // Calculate the highest power of the prime that      // is  <= n      int     power     =     1  ;      while     (  Math  .  pow  (  prime       power     +     1  )      <=     n  )     {      power  ++  ;      }      lcm     *=     Math  .  pow  (  prime       power  );      }      return     lcm  ;      }      public     static     void     main  (  String  []     args  )      {      int     n     =     20  ;      System  .  out  .  println  (  smallestMultiple  (  n  ));      }   }   
Python
   import   math   def   sieve_of_eratosthenes  (  n  ):      '''Generate all prime numbers up to n.'''   is_prime   =   [  True  ]   *   (  n   +   1  )   p   =   2   while   (  p   *   p    <=   n  ):   if   (  is_prime  [  p  ]   ==   True  ):   for   i   in   range  (  p   *   p     n   +   1     p  ):   is_prime  [  i  ]   =   False   p   +=   1   prime_numbers   =   [  p   for   p   in   range  (  2     n   +   1  )   if   is_prime  [  p  ]]   return   prime_numbers   def   smallest_multiple  (  n  ):      '''Find the smallest number divisible by all numbers from 1 to n.'''   primes   =   sieve_of_eratosthenes  (  n  )   lcm   =   1   for   prime   in   primes  :   # Calculate the highest power of the prime that is  <= n   power   =   1   while   prime   **   (  power   +   1  )    <=   n  :   power   +=   1   lcm   *=   prime   **   power   return   lcm   # Example usage:   n   =   20   print  (  smallest_multiple  (  n  ))   
JavaScript
   // Function to generate all prime numbers up to n using the   // Sieve of Eratosthenes   function     sieveOfEratosthenes  (  n  )   {      let     isPrime     =     new     Array  (  n     +     1  ).  fill  (  true  );      let     p     =     2  ;      while     (  p     *     p      <=     n  )     {      if     (  isPrime  [  p  ])     {      for     (  let     i     =     p     *     p  ;     i      <=     n  ;     i     +=     p  )     {      isPrime  [  i  ]     =     false  ;      }      }      p  ++  ;      }      let     primeNumbers     =     [];      for     (  let     p     =     2  ;     p      <=     n  ;     p  ++  )     {      if     (  isPrime  [  p  ])     {      primeNumbers  .  push  (  p  );      }      }      return     primeNumbers  ;   }   // Function to find the smallest number divisible by all   // numbers from 1 to n   function     smallestMultiple  (  n  )   {      let     primes     =     sieveOfEratosthenes  (  n  );      let     lcm     =     1  ;      for     (  let     prime     of     primes  )     {      // Calculate the highest power of the prime that is      //  <= n      let     power     =     1  ;      while     (  Math  .  pow  (  prime       power     +     1  )      <=     n  )     {      power  ++  ;      }      lcm     *=     Math  .  pow  (  prime       power  );      }      return     lcm  ;   }   // Example usage:   let     n     =     20  ;   console  .  log  (  smallestMultiple  (  n  ));   

Sortida
The smallest number divisible by all numbers from 1 to 20 is 232792560  

Complexitat temporal: O(nlogn)
Espai auxiliar: O(n)


Crea un qüestionari