Localització òptima del punt per minimitzar la distància total

Localització òptima del punt per minimitzar la distància total
Prova-ho a GfG Practice Localització òptima del punt per minimitzar la distància total #practiceLinkDiv { mostrar: cap !important; }

Donat un conjunt de punts com i una recta com ax+by+c = 0. Hem de trobar un punt en una línia donada per al qual la suma de distàncies d'un conjunt de punts donat sigui mínima. 

Exemple:  

In above figure optimum location of point of x - y - 3 = 0 line is (2 -1) whose total distance with other points is 20.77 which is minimum obtainable total distance. 
Recommended Practice Localització òptima del punt per minimitzar la distància total Prova-ho!

Si prenem un punt d'una línia donada a una distància infinita, el cost total de la distància serà infinit ara quan movem aquest punt a la línia cap a punts donats, el cost total de la distància comença a disminuir i després d'un temps torna a augmentar, que arriba a l'infinit a l'altre extrem infinit de la línia, de manera que la corba del cost de la distància sembla una corba U i hem de trobar el valor inferior d'aquesta corba U. 

Com que la corba U no augmenta ni disminueix monòtonament, no podem utilitzar la cerca binària per trobar el punt més baix aquí farem servir la cerca ternària per trobar el punt més baix la cerca ternària salta un terç de l'espai de cerca a cada iteració, podeu llegir més sobre la cerca ternària aquí

Així que la solució procedeix de la següent manera, comencem amb els valors baix i alt inicialitzats com a valors més petits i més grans respectivament, després comencem la iteració a cada iteració, calculem dos mitjans mid1 i mid2 que representen 1/3 i 2/3 posicions a l'espai de cerca, calculem la distància total de tots els punts amb mid1 i mid2 i actualitzem baix o alt comparant aquestes distàncies costen aquesta iteració aproximadament. 

C++
   // C/C++ program to find optimum location and total cost   #include          using     namespace     std  ;   #define sq(x) ((x) * (x))   #define EPS 1e-6   #define N 5   // structure defining a point   struct     point     {      int     x       y  ;      point  ()     {}      point  (  int     x       int     y  )      :     x  (  x  )           y  (  y  )      {      }   };   // structure defining a line of ax + by + c = 0 form   struct     line     {      int     a       b       c  ;      line  (  int     a       int     b       int     c  )      :     a  (  a  )           b  (  b  )           c  (  c  )      {      }   };   // method to get distance of point (x y) from point p   double     dist  (  double     x       double     y       point     p  )   {      return     sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));   }   /* Utility method to compute total distance all points    when choose point on given line has x-coordinate    value as X */   double     compute  (  point     p  []     int     n       line     l       double     X  )   {      double     res     =     0  ;      // calculating Y of chosen point by line equation      double     Y     =     -1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]);      return     res  ;   }   // Utility method to find minimum total distance   double     findOptimumCostUtil  (  point     p  []     int     n       line     l  )   {      double     low     =     -1e6  ;      double     high     =     1e6  ;      // loop until difference between low and high      // become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative x co-ordiantes      // of search space      double     mid1     =     low     +     (  high     -     low  )     /     3  ;      double     mid2     =     high     -     (  high     -     low  )     /     3  ;      //      double     dist1     =     compute  (  p       n       l       mid1  );      double     dist2     =     compute  (  p       n       l       mid2  );      // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;      // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }      // compute optimum distance cost by sending average      // of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );   }   // method to find optimum cost   double     findOptimumCost  (  int     points  [  N  ][  2  ]     line     l  )   {      point     p  [  N  ];      // converting 2D array input to point array      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     point  (  points  [  i  ][  0  ]     points  [  i  ][  1  ]);      return     findOptimumCostUtil  (  p       N       l  );   }   // Driver code to test above method   int     main  ()   {      line     l  (  1       -1       -3  );      int     points  [  N  ][  2  ]     =     {      {     -3       -2     }     {     -1       0     }     {     -1       2     }     {     1       2     }     {     3       4     }      };      cout      < <     findOptimumCost  (  points       l  )      < <     endl  ;      return     0  ;   }   
Java
   // A Java program to find optimum location   // and total cost   class   GFG     {      static     double     sq  (  double     x  )     {     return     ((  x  )     *     (  x  ));     }      static     int     EPS     =     (  int  )(  1e-6  )     +     1  ;      static     int     N     =     5  ;      // structure defining a point      static     class   point     {      int     x       y  ;      point  ()     {}      public     point  (  int     x       int     y  )      {      this  .  x     =     x  ;      this  .  y     =     y  ;      }      };      // structure defining a line of ax + by + c = 0 form      static     class   line     {      int     a       b       c  ;      public     line  (  int     a       int     b       int     c  )      {      this  .  a     =     a  ;      this  .  b     =     b  ;      this  .  c     =     c  ;      }      };      // method to get distance of point (x y) from point p      static     double     dist  (  double     x       double     y       point     p  )      {      return     Math  .  sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));      }      /* Utility method to compute total distance all points    when choose point on given line has x-coordinate    value as X */      static     double     compute  (  point     p  []       int     n       line     l        double     X  )      {      double     res     =     0  ;      // calculating Y of chosen point by line equation      double     Y     =     -  1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]  );      return     res  ;      }      // Utility method to find minimum total distance      static     double     findOptimumCostUtil  (  point     p  []       int     n        line     l  )      {      double     low     =     -  1e6  ;      double     high     =     1e6  ;      // loop until difference between low and high      // become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative x      // co-ordiantes of search space      double     mid1     =     low     +     (  high     -     low  )     /     3  ;      double     mid2     =     high     -     (  high     -     low  )     /     3  ;      double     dist1     =     compute  (  p       n       l       mid1  );      double     dist2     =     compute  (  p       n       l       mid2  );      // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;      // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }      // compute optimum distance cost by sending average      // of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );      }      // method to find optimum cost      static     double     findOptimumCost  (  int     points  [][]       line     l  )      {      point  []     p     =     new     point  [  N  ]  ;      // converting 2D array input to point array      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     new     point  (  points  [  i  ][  0  ]       points  [  i  ][  1  ]  );      return     findOptimumCostUtil  (  p       N       l  );      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      line     l     =     new     line  (  1       -  1       -  3  );      int     points  [][]     =     {     {     -  3       -  2     }      {     -  1       0     }      {     -  1       2     }      {     1       2     }      {     3       4     }     };      System  .  out  .  println  (  findOptimumCost  (  points       l  ));      }   }   // This code is contributed by Rajput-Ji   
Python3
   # A Python3 program to find optimum location   # and total cost   import   math   class   Optimum_distance  :   # Class defining a point   class   Point  :   def   __init__  (  self     x     y  ):   self  .  x   =   x   self  .  y   =   y   # Class defining a line of ax + by + c = 0 form   class   Line  :   def   __init__  (  self     a     b     c  ):   self  .  a   =   a   self  .  b   =   b   self  .  c   =   c   # Method to get distance of point    # (x y) from point p   def   dist  (  self     x     y     p  ):   return   math  .  sqrt  ((  x   -   p  .  x  )   **   2   +   (  y   -   p  .  y  )   **   2  )   # Utility method to compute total distance   # all points when choose point on given   # line has x-coordinate value as X   def   compute  (  self     p     n     l     x  ):   res   =   0   y   =   -  1   *   (  l  .  a  *  x   +   l  .  c  )   /   l  .  b   # Calculating Y of chosen point   # by line equation   for   i   in   range  (  n  ):   res   +=   self  .  dist  (  x     y     p  [  i  ])   return   res   # Utility method to find minimum total distance   def   find_Optimum_cost_untill  (  self     p     n     l  ):   low   =   -  1e6   high   =   1e6   eps   =   1e-6   +   1   # Loop until difference between low   # and high become less than EPS   while  ((  high   -   low  )   >   eps  ):   # mid1 and mid2 are representative x   # co-ordiantes of search space   mid1   =   low   +   (  high   -   low  )   /   3   mid2   =   high   -   (  high   -   low  )   /   3   dist1   =   self  .  compute  (  p     n     l     mid1  )   dist2   =   self  .  compute  (  p     n     l     mid2  )   # If mid2 point gives more total    # distance skip third part   if   (  dist1    <   dist2  ):   high   =   mid2   # If mid1 point gives more total   # distance skip first part   else  :   low   =   mid1   # Compute optimum distance cost by    # sending average of low and high as X   return   self  .  compute  (  p     n     l     (  low   +   high  )   /   2  )   # Method to find optimum cost   def   find_Optimum_cost  (  self     p     l  ):   n   =   len  (  p  )   p_arr   =   [  None  ]   *   n   # Converting 2D array input to point array   for   i   in   range  (  n  ):   p_obj   =   self  .  Point  (  p  [  i  ][  0  ]   p  [  i  ][  1  ])   p_arr  [  i  ]   =   p_obj   return   self  .  find_Optimum_cost_untill  (  p_arr     n     l  )   # Driver Code   if   __name__   ==   '__main__'  :   obj   =   Optimum_distance  ()   l   =   obj  .  Line  (  1     -  1     -  3  )   p   =   [   [   -  3     -  2   ]   [   -  1     0   ]   [   -  1     2   ]   [   1     2   ]   [   3     4   ]   ]   print  (  obj  .  find_Optimum_cost  (  p     l  ))   # This code is contributed by Sulu_mufi   
C#
   // C# program to find optimum location   // and total cost   using     System  ;   class     GFG     {      static     double     sq  (  double     x  )     {     return     ((  x  )     *     (  x  ));     }      static     int     EPS     =     (  int  )(  1e-6  )     +     1  ;      static     int     N     =     5  ;      // structure defining a point      public     class     point     {      public     int     x       y  ;      public     point  ()     {}      public     point  (  int     x       int     y  )      {      this  .  x     =     x  ;      this  .  y     =     y  ;      }      };      // structure defining a line      // of ax + by + c = 0 form      public     class     line     {      public     int     a       b       c  ;      public     line  (  int     a       int     b       int     c  )      {      this  .  a     =     a  ;      this  .  b     =     b  ;      this  .  c     =     c  ;      }      };      // method to get distance of      // point (x y) from point p      static     double     dist  (  double     x       double     y       point     p  )      {      return     Math  .  Sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));      }      /* Utility method to compute total distance    of all points when choose point on    given line has x-coordinate value as X */      static     double     compute  (  point  []     p       int     n       line     l        double     X  )      {      double     res     =     0  ;      // calculating Y of chosen point      // by line equation      double     Y     =     -  1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]);      return     res  ;      }      // Utility method to find minimum total distance      static     double     findOptimumCostUtil  (  point  []     p       int     n        line     l  )      {      double     low     =     -  1  e6  ;      double     high     =     1  e6  ;      // loop until difference between      // low and high become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative      // x co-ordiantes of search space      double     mid1     =     low     +     (  high     -     low  )     /     3  ;      double     mid2     =     high     -     (  high     -     low  )     /     3  ;      double     dist1     =     compute  (  p       n       l       mid1  );      double     dist2     =     compute  (  p       n       l       mid2  );      // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;      // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }      // compute optimum distance cost by      // sending average of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );      }      // method to find optimum cost      static     double     findOptimumCost  (  int  [     ]     points       line     l  )      {      point  []     p     =     new     point  [  N  ];      // converting 2D array input to point array      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     new     point  (  points  [  i       0  ]     points  [  i       1  ]);      return     findOptimumCostUtil  (  p       N       l  );      }      // Driver Code      public     static     void     Main  (  String  []     args  )      {      line     l     =     new     line  (  1       -  1       -  3  );      int  [     ]     points     =     {     {     -  3       -  2     }      {     -  1       0     }      {     -  1       2     }      {     1       2     }      {     3       4     }     };      Console  .  WriteLine  (  findOptimumCost  (  points       l  ));      }   }   // This code is contributed by 29AjayKumar   
JavaScript
    <  script  >   // A JavaScript program to find optimum location   // and total cost   function     sq  (  x  )   {      return     x  *  x  ;   }   let     EPS     =     (  1e-6  )     +     1  ;   let     N     =     5  ;   // structure defining a point   class     point   {      constructor  (  x    y  )      {      this  .  x  =  x  ;      this  .  y  =  y  ;      }   }   // structure defining a line of ax + by + c = 0 form   class     line   {      constructor  (  a    b    c  )      {      this  .  a     =     a  ;      this  .  b     =     b  ;      this  .  c     =     c  ;      }       }   // method to get distance of point (x y) from point p   function     dist  (  x    y    p  )   {      return     Math  .  sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));   }   /* Utility method to compute total distance all points    when choose point on given line has x-coordinate    value as X */   function     compute  (  p    n    l    X  )   {      let     res     =     0  ;          // calculating Y of chosen point by line equation      let     Y     =     -  1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]);          return     res  ;   }   // Utility method to find minimum total distance   function     findOptimumCostUtil  (  p    n    l  )   {      let     low     =     -  1e6  ;      let     high     =     1e6  ;          // loop until difference between low and high      // become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative x      // co-ordiantes of search space      let     mid1     =     low     +     (  high     -     low  )     /     3  ;      let     mid2     =     high     -     (  high     -     low  )     /     3  ;          let     dist1     =     compute  (  p       n       l       mid1  );      let     dist2     =     compute  (  p       n       l       mid2  );          // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;          // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }          // compute optimum distance cost by sending average      // of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );   }   // method to find optimum cost   function     findOptimumCost  (  points    l  )   {      let     p     =     new     Array  (  N  );          // converting 2D array input to point array      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     new     point  (  points  [  i  ][  0  ]     points  [  i  ][  1  ]);          return     findOptimumCostUtil  (  p       N       l  );   }   // Driver Code   let     l     =     new     line  (  1       -  1       -  3  );   let     points  =     [[     -  3       -  2     ]      [     -  1       0     ]      [     -  1       2     ]      [     1       2     ]      [     3       4     ]];   document  .  write  (  findOptimumCost  (  points       l  ));   // This code is contributed by rag2127    <  /script>   

Sortida
20.7652 

Complexitat temporal: O (n 2
Espai auxiliar: O(n)


 

Crea un qüestionari