Dissenyeu, suprimiu, suprimiu i les consultes medianes de manera eficient en un conjunt

Dissenyeu, suprimiu, suprimiu i les consultes medianes de manera eficient en un conjunt

Inicialment, donat un conjunt buit i diverses consultes sobre cadascuna possiblement dels tipus següents:  

    Inserir - Inseriu un nou element "X". Esborrar - Eliminar un element existent "x". Mitjà - Imprimiu l'element mitjà dels números actualment al conjunt

Exemple:  

Input : Insert 1 Insert 4 Insert 7 Median Output : The first three queries should insert 1 4 and 7 into an empty set. The fourth query should return 4 (median of 1 4 7). 


Per a propòsits expositius, suposem el següent, però aquests supòsits no són les limitacions del mètode que es discuteix aquí: 
1. En qualsevol cas, tots els elements són diferents que no es produeix cap d'ells més d'una vegada. 
2. La consulta "mediana" només es fa quan hi hagi un nombre estrany d'elements al conjunt. (Haurem de fer dues consultes al nostre arbre del segment en cas de nombres parells) 
3. Els elements del conjunt oscil·len d’1 a +10^6.

Mètode 1 (ingenu)  
En la implementació ingènua podem fer les dues primeres consultes a O (1), però la darrera consulta a O (Max_Elem) on Max_elem és l’element màxim de tots els temps (inclosos elements suprimits).

Suposem una matriu Comte [] (de mida 10^6 + 1) Per mantenir el recompte de cada element al subconjunt. A continuació, es mostren algoritmes simples i explicatius per a les 3 consultes:
Inseriu la consulta X:  

 count[x]++; if (x > max_elem) max_elem = x; n++; 


Suprimeix la consulta X:   

 if (count[x] > 0) count[x]--; n--; 


Consulta mediana:   

 sum = 0; i = 0; while( sum  <= n / 2 ) { i++; sum += count[i]; } median = i; return median; 

Il·lustració del recompte de matrius [] que representa el conjunt {1 4 7 8 9} L'element mitjà és "7":

Dissenyar eficientment Inseriu eliminació i consultes medianes en un conjunt


La consulta "mitjana" té la intenció de trobar la (n + 1)/2 "1" a la matriu en aquest cas 3er "1"; Ara fem el mateix mitjançant un arbre de segments.
 
Mètode 2 (mitjançant Arbre del segment Que)  
Fem un arbre del segment Per emmagatzemar la suma d’intervals on un interval [a b] representa el nombre d’elements presents al conjunt actualment en el rang [a b]. Per exemple, si considerem que la consulta d’exemple anterior (3 7) Retorna 2 consulta (4 4) Retorna 1 consulta (5 5) Retorna 0.

Les consultes d’inserció i suprimir són senzilles i ambdues es poden implementar mitjançant l’actualització de funcions (int x int dif) (afegeix “dif” a l’índex “x”)

Algorisme   

// adds ‘diff’ at index ‘x’   update(node a b x diff)   // If leaf node If a == b and a == x segmentTree[node] += diff // If non-leaf node and x lies in its range If x is in [a b] // Update children recursively update(2*node a (a + b)/2 x diff) update(2*node + 1 (a + b)/2 + 1 b x diff) // Update node segmentTree[node] = segmentTree[2 * node] + segmentTree[2 * node + 1] 


La funció recursiva anterior s'executa O (log (max_elem)) (En aquest cas, max_elem és 10^6) i s'utilitza tant per a la inserció com per a la supressió amb les trucades següents: 

  1. Inseriu "X" mitjançant l'actualització (1 0 10^6 x 1). Tingueu en compte que l’arrel de l’arbre es passa l’índex d’inici es passa com a 0 i l’índex final com a 10^6 de manera que tots els intervals que tinguin X s’actualitzin.
  2. Eliminar "X" es fa mitjançant l'actualització (1 0 10^6 x -1). Tingueu en compte que l’arrel de l’arbre es passa l’índex d’inici es passa com a 0 i l’índex final com a 10^6 de manera que tots els intervals que tinguin X s’actualitzin.

Ara la funció per trobar l’índex amb KTH “1” on “K” en aquest cas sempre serà (n + 1) / 2 Això funcionarà molt com la cerca binària, podeu pensar -ho com una funció de cerca binària recursiva en un arbre de segments.

Prenem un exemple per entendre que el nostre conjunt té actualment elements {1 4 7 8 9} i, per tant, es representa amb el següent arbre del segment.
 

Dissenyar eficientment Inseriu eliminació i consultes medianes en un conjunt


Si estem en un node que no sigui de fulla, estem segurs que té els dos fills, veiem si el nen esquerre té un nombre més o igual de un com a "K" Si és així, estem segurs que el nostre índex es troba a la subtrata esquerra, si no, si la subtera esquerra té menys un nombre d'1 que K, estem segurs que el nostre índex es troba a la subtret dreta. Ho fem recursivament per arribar al nostre índex i a partir d’aquí el tornem.

Algorisme   

1.findKth(node a b k) 2. If a != b 3. If segmentTree[ 2 * node ] >= k 4. return findKth(2*node a (a + b)/2 k) 5. else 6. return findKth(2*node + 1 (a + b)/2 + 1 b k - segmentTree[ 2 * node ]) 7. else 8. return a 


La funció recursiva anterior s'executa O (log (max_elem)) .

C++
   // A C++ program to implement insert delete and    // median queries using segment tree    #include          #define maxn 3000005    #define max_elem 1000000    using     namespace     std  ;          // A global array to store segment tree.    // Note: Since it is global all elements are 0.    int     segmentTree  [  maxn  ];          // Update 'node' and its children in segment tree.    // Here 'node' is index in segmentTree[] 'a' and    // 'b' are starting and ending indexes of range stored    // in current node.    // 'diff' is the value to be added to value 'x'.    void     update  (  int     node       int     a       int     b       int     x       int     diff  )      {         // If current node is a leaf node       if     (  a     ==     b     &&     a     ==     x     )         {         // add 'diff' and return       segmentTree  [  node  ]     +=     diff  ;         return     ;         }             // If current node is non-leaf and 'x' is in its       // range       if     (  x     >=     a     &&     x      <=     b  )         {         // update both sub-trees left and right       update  (  node  *  2       a       (  a     +     b  )  /  2       x       diff  );         update  (  node  *  2     +     1       (  a     +     b  )  /  2     +     1       b       x       diff  );             // Finally update current node       segmentTree  [  node  ]     =     segmentTree  [  node  *  2  ]     +         segmentTree  [  node  *  2     +     1  ];         }      }          // Returns k'th node in segment tree    int     findKth  (  int     node       int     a       int     b       int     k  )      {         // non-leaf node will definitely have both       // children; left and right       if     (  a     !=     b  )         {         // If kth element lies in the left subtree       if     (  segmentTree  [  node  *  2  ]     >=     k  )         return     findKth  (  node  *  2       a       (  a     +     b  )  /  2       k  );             // If kth one lies in the right subtree       return     findKth  (  node  *  2     +     1       (  a     +     b  )  /  2     +     1           b       k     -     segmentTree  [  node  *  2  ]);         }             // if at a leaf node return the index it stores       // information about       return     (  segmentTree  [  node  ])  ?     a     :     -1  ;      }          // insert x in the set    void     insert  (  int     x  )      {         update  (  1       0       max_elem       x       1  );      }          // delete x from the set    void     delete  (  int     x  )      {         update  (  1       0       max_elem       x       -1  );      }          // returns median element of the set with odd    // cardinality only    int     median  ()      {         int     k     =     (  segmentTree  [  1  ]     +     1  )     /     2  ;         return     findKth  (  1       0       max_elem       k  );      }          // Driver code    int     main  ()      {         insert  (  1  );         insert  (  4  );         insert  (  7  );         cout      < <     'Median for the set {147} = '          < <     median  ()      < <     endl  ;         insert  (  8  );         insert  (  9  );         cout      < <     'Median for the set {14789} = '       < <     median  ()      < <     endl  ;         delete  (  1  );         delete  (  8  );         cout      < <     'Median for the set {479} = '       < <     median  ()      < <     endl  ;         return     0  ;      }      
Java
   // A Java program to implement insert delete and    // median queries using segment tree    import     java.io.*  ;   class   GFG  {   public     static     int     maxn     =     3000005  ;   public     static     int     max_elem     =     1000000  ;   // A global array to store segment tree.    // Note: Since it is global all elements are 0.    public     static     int  []     segmentTree     =     new     int  [  maxn  ]  ;   // Update 'node' and its children in segment tree.    // Here 'node' is index in segmentTree[] 'a' and    // 'b' are starting and ending indexes of range stored    // in current node.    // 'diff' is the value to be added to value 'x'.    public     static     void     update  (  int     node       int     a       int     b           int     x       int     diff  )   {          // If current node is a leaf node       if     (  a     ==     b     &&     a     ==     x     )         {             // Add 'diff' and return       segmentTree  [  node  ]     +=     diff  ;         return     ;         }          // If current node is non-leaf and 'x'      // is in its range      if     (  x     >=     a     &&     x      <=     b  )      {          // Update both sub-trees left and right      update  (  node     *     2       a       (  a     +     b  )     /     2       x       diff  );      update  (  node     *     2     +     1       (  a     +     b  )     /     2     +     1        b       x       diff  );             // Finally update current node      segmentTree  [  node  ]     =     segmentTree  [  node     *     2  ]     +      segmentTree  [  node     *     2     +     1  ]  ;      }   }   // Returns k'th node in segment tree    public     static     int     findKth  (  int     node       int     a           int     b       int     k  )   {          // Non-leaf node will definitely have both       // children; left and right      if     (  a     !=     b  )      {          // If kth element lies in the left subtree       if     (  segmentTree  [  node     *     2  ]     >=     k  )      {      return     findKth  (  node     *     2       a       (  a     +     b  )     /     2       k  );      }          // If kth one lies in the right subtree      return     findKth  (  node     *     2     +     1       (  a     +     b  )     /     2     +     1        b       k     -     segmentTree  [  node     *     2  ]  );          }          // If at a leaf node return the index it stores       // information about       return     (  segmentTree  [  node  ]     !=     0  )     ?     a     :     -  1  ;   }   // Insert x in the set   public     static     void     insert  (  int     x  )   {      update  (  1       0       max_elem       x       1  );   }   // Delete x from the set    public     static     void     delete  (  int     x  )      {      update  (  1       0       max_elem       x       -  1  );      }   // Returns median element of the set   // with odd cardinality only    public     static     int     median  ()   {      int     k     =     (  segmentTree  [  1  ]     +     1  )     /     2  ;         return     findKth  (  1       0       max_elem       k  );   }   // Driver code    public     static     void     main  (  String  []     args  )   {      insert  (  1  );         insert  (  4  );         insert  (  7  );      System  .  out  .  println  (  'Median for the set {147} = '     +         median  ());      insert  (  8  );         insert  (  9  );      System  .  out  .  println  (  'Median for the set {14789} = '     +      median  ());      delete  (  1  );         delete  (  8  );         System  .  out  .  println  (  'Median for the set {479} = '     +         median  ());   }   }   // This code is contributed by avanitrachhadiya2155   
Python3
   # A Python3 program to implement insert delete and   # median queries using segment tree   maxn   =   3000005   max_elem   =   1000000   # A global array to store segment tree.   # Note: Since it is global all elements are 0.   segmentTree   =   [  0   for   i   in   range  (  maxn  )]   # Update 'node' and its children in segment tree.   # Here 'node' is index in segmentTree[] 'a' and   # 'b' are starting and ending indexes of range stored   # in current node.   # 'diff' is the value to be added to value 'x'.   def   update  (  node     a     b     x     diff  ):   global   segmentTree   # If current node is a leaf node   if   (  a   ==   b   and   a   ==   x   ):   # add 'diff' and return   segmentTree  [  node  ]   +=   diff   return   # If current node is non-leaf and 'x' is in its   # range   if   (  x   >=   a   and   x    <=   b  ):   # update both sub-trees left and right   update  (  node   *   2     a     (  a   +   b  )  //  2     x     diff  )   update  (  node   *   2   +   1     (  a   +   b  )  //  2   +   1     b     x     diff  )   # Finally update current node   segmentTree  [  node  ]   =   segmentTree  [  node   *   2  ]   +   segmentTree  [  node   *   2   +   1  ]   # Returns k'th node in segment tree   def   findKth  (  node     a     b     k  ):   global   segmentTree   # non-leaf node will definitely have both   # children left and right   if   (  a   !=   b  ):   # If kth element lies in the left subtree   if   (  segmentTree  [  node   *   2  ]   >=   k  ):   return   findKth  (  node   *   2     a     (  a   +   b  )  //  2     k  )   # If kth one lies in the right subtree   return   findKth  (  node   *   2   +   1     (  a   +   b  )  //  2   +   1     b     k   -   segmentTree  [  node   *   2  ])   # if at a leaf node return the index it stores   # information about   return   a   if   (  segmentTree  [  node  ])   else   -  1   # insert x in the set   def   insert  (  x  ):   update  (  1     0     max_elem     x     1  )   # delete x from the set   def   delete  (  x  ):   update  (  1     0     max_elem     x     -  1  )   # returns median element of the set with odd   # cardinality only   def   median  ():   k   =   (  segmentTree  [  1  ]   +   1  )   //   2   return   findKth  (  1     0     max_elem     k  )   # Driver code   if   __name__   ==   '__main__'  :   insert  (  1  )   insert  (  4  )   insert  (  7  )   print  (  'Median for the set {147} ='    median  ())   insert  (  8  )   insert  (  9  )   print  (  'Median for the set {14789} ='    median  ())   delete  (  1  )   delete  (  8  )   print  (  'Median for the set {479} ='    median  ())   # This code is contributed by mohit kumar 29   
C#
   // A C# program to implement insert delete    // and median queries using segment tree    using     System  ;   class     GFG  {       public     static     int     maxn     =     3000005  ;   public     static     int     max_elem     =     1000000  ;   // A global array to store segment tree.    // Note: Since it is global all elements are 0.   public     static     int  []     segmentTree     =     new     int  [  maxn  ];   // Update 'node' and its children in segment tree.    // Here 'node' is index in segmentTree[] 'a' and    // 'b' are starting and ending indexes of range stored    // in current node.    // 'diff' is the value to be added to value 'x'.    public     static     void     update  (  int     node       int     a           int     b       int     x       int     diff  )   {          // If current node is a leaf node       if     (  a     ==     b     &&     a     ==     x  )      {          // Add 'diff' and return       segmentTree  [  node  ]     +=     diff  ;         return     ;         }          // If current node is non-leaf and 'x'      // is in its range      if     (  x     >=     a     &&     x      <=     b  )      {          // Update both sub-trees left and right      update  (  node     *     2       a       (  a     +     b  )     /     2       x       diff  );      update  (  node     *     2     +     1       (  a     +     b  )     /     2     +     1        b       x       diff  );             // Finally update current node      segmentTree  [  node  ]     =     segmentTree  [  node     *     2  ]     +      segmentTree  [  node     *     2     +     1  ];      }   }   // Returns k'th node in segment tree   public     static     int     findKth  (  int     node       int     a        int     b       int     k  )   {          // Non-leaf node will definitely have both       // children; left and right      if     (  a     !=     b  )      {          // If kth element lies in the left subtree       if     (  segmentTree  [  node     *     2  ]     >=     k  )      {      return     findKth  (  node     *     2       a           (  a     +     b  )     /     2       k  );      }          // If kth one lies in the right subtree      return     findKth  (  node     *     2     +     1       (  a     +     b  )     /     2     +     1        b       k     -     segmentTree  [  node     *     2  ]);      }          // If at a leaf node return the index it      // stores information about       if     (  segmentTree  [  node  ]     !=     0  )      {      return     a  ;      }      else      {      return     -  1  ;      }   }   // Insert x in the set   public     static     void     insert  (  int     x  )   {      update  (  1       0       max_elem       x       1  );   }   // Delete x from the set    public     static     void     delete  (  int     x  )      {      update  (  1       0       max_elem       x       -  1  );      }   // Returns median element of the set   // with odd cardinality only   public     static     int     median  ()   {      int     k     =     (  segmentTree  [  1  ]     +     1  )     /     2  ;      return     findKth  (  1       0       max_elem       k  );   }   // Driver code   static     public     void     Main  ()   {      insert  (  1  );         insert  (  4  );         insert  (  7  );      Console  .  WriteLine  (  'Median for the set {147} = '     +      median  ());      insert  (  8  );         insert  (  9  );      Console  .  WriteLine  (  'Median for the set {14789} = '     +      median  ());      delete  (  1  );         delete  (  8  );         Console  .  WriteLine  (  'Median for the set {479} = '     +      median  ());   }   }   // This code is contributed by rag2127   
JavaScript
    <  script  >   // A Javascript program to implement insert delete and   // median queries using segment tree          let     maxn     =     3000005  ;      let     max_elem     =     1000000  ;          // A global array to store segment tree.      // Note: Since it is global all elements are 0.      let     segmentTree     =     new     Array  (  maxn  );      for  (  let     i  =  0  ;  i   <  maxn  ;  i  ++  )      {      segmentTree  [  i  ]  =  0  ;      }   // Update 'node' and its children in segment tree.   // Here 'node' is index in segmentTree[] 'a' and   // 'b' are starting and ending indexes of range stored   // in current node.   // 'diff' is the value to be added to value 'x'.   function     update  (  node    a    b    x    diff  )   {      // If current node is a leaf node      if     (  a     ==     b     &&     a     ==     x     )      {          // Add 'diff' and return      segmentTree  [  node  ]     +=     diff  ;      return     ;      }          // If current node is non-leaf and 'x'      // is in its range      if     (  x     >=     a     &&     x      <=     b  )      {          // Update both sub-trees left and right      update  (  node     *     2       a       Math  .  floor  ((  a     +     b  )     /     2  )     x       diff  );      update  (  node     *     2     +     1       Math  .  floor  ((  a     +     b  )     /     2  )     +     1        b       x       diff  );          // Finally update current node      segmentTree  [  node  ]     =     segmentTree  [  node     *     2  ]     +      segmentTree  [  node     *     2     +     1  ];      }   }   // Returns k'th node in segment tree   function     findKth  (  node    a    b    k  )   {      // Non-leaf node will definitely have both      // children; left and right      if     (  a     !=     b  )      {          // If kth element lies in the left subtree      if     (  segmentTree  [  node     *     2  ]     >=     k  )      {      return     findKth  (  node     *     2       a       Math  .  floor  ((  a     +     b  )     /     2  )     k  );      }          // If kth one lies in the right subtree      return     findKth  (  node     *     2     +     1       Math  .  floor  ((  a     +     b  )     /     2  )     +     1        b       k     -     segmentTree  [  node     *     2  ]);          }          // If at a leaf node return the index it stores      // information about      return     (  segmentTree  [  node  ]     !=     0  )     ?     a     :     -  1  ;   }   // Insert x in the set   function     insert  (  x  )   {      update  (  1       0       max_elem       x       1  );   }   // Delete x from the set   function     delet  (  x  )   {      update  (  1       0       max_elem       x       -  1  );   }   // Returns median element of the set   // with odd cardinality only   function     median  ()   {      let     k     =     (  segmentTree  [  1  ]     +     1  )     /     2  ;      return     findKth  (  1       0       max_elem       k  );       }   // Driver code   insert  (  1  );   insert  (  4  );   insert  (  7  );   document  .  write  (  'Median for the set {147} = '     +      median  ()  +  '  
'
); insert ( 8 ); insert ( 9 ); document . write ( 'Median for the set {14789} = ' + median () + '
'
); delet ( 1 ); delet ( 8 ); document . write ( 'Median for the set {479} = ' + median () + '
'
); // This code is contributed by unknown2108 < /script>

Sortida: 

Median for the set {147} = 4 Median for the set {14789} = 7 Median for the set {479} = 7 


Conclusió:  
Les tres consultes s’aconsegueixen O (log (max_elem)) En aquest cas, max_elem = 10^6 SO log (max_elem) és aproximadament igual a 20.
L’arbre del segment utilitza O (max_elem) espai.

Si la consulta d’eliminació no hi fos, el problema també s’hauria pogut fer amb un famós algorisme aquí .