Distància de la cel·la més propera amb 1 en una matriu binària

Distància de la cel·la més propera amb 1 en una matriu binària
Prova-ho a GfG Practice

Donat un binari quadrícula[][] . Troba la distància del més proper 1 a la quadrícula per a cada cel·la.
La distància es calcula com  |i 1   - i 2 | + |j 1  -j 2 | on jo 1 j 1  són el número de fila i el número de columna de la cel·la actual i i 2 j 2  són el número de fila i el número de columna de la cel·la més propera que té el valor 1. 

Nota: Hi ha d'haver almenys una cel·la amb el valor 1 a la quadrícula.

Exemples:

Entrada: quadrícula[][] = [[0 1 1 0]
[1 1 0 0]
[0 0 1 1]]
Sortida: [[1 0 0 1]
[0 0 1 1]
[1 1 0 0]]
Explicació:
la cel·la (0 1) té l'1 més proper a la cel·la (0 0) - distància = |0-0| + |0-1| = 1
la cel·la (0 2) té l'1 més proper a la cel·la (0 3) - distància = |0-0| + |3-2| = 1
la cel·la (1 0) té l'1 més proper a la cel·la (0 0) - distància = |1-0| + |0-0| = 1
la cel·la (1 1) té l'1 més proper a la cel·la (1 2) - distància = |1-1| + |1-2| = 1
la cel·la (2 2) té l'1 més proper a la cel·la (2 1) - distància = |2-2| + |2-1| = 1
la cel·la (2 3) té l'1 més proper a la cel·la (1 3) - distància = |2-1| + |3-3| = 1
Totes les restes són cel·les que tenen 1, de manera que la seva distància des de la cel·la més propera que té 1 és 0.

Entrada: quadrícula[][] = [[1 0 1]
[1 1 0]
[1 0 0]]
Sortida: [[0 1 0]
[0 0 1]
[0 1 2]]
Explicació:
la cel·la (0 0) té l'1 més proper a la cel·la (0 1) - distància = |0-0| + |0-1| = 1
la cel·la (0 2) té l'1 més proper a la cel·la (0 1) - distància = |0-0| + |2-1| = 1
la cel·la (1 0) té l'1 més proper a la cel·la (0 1) - distància = |1-0| + |0-1| = 2
la cel·la (1 1) té l'1 més proper a la cel·la (1 2) - distància = |1-1| + |1-2| = 1
la cel·la (2 0) té l'1 més proper a la cel·la (2 1) - distància = |2-2| + |2-1| = 1
la cel·la (2 2) té l'1 més proper a la cel·la (2 1) - distància = |2-2| + |2-1| = 1
Totes les restes són cel·les que tenen 1, de manera que la seva distància des de la cel·la més propera que té 1 és 0.

Taula de continguts

[Enfocament ingenu] - O((n*m)^2) Temps i O(n * m) Espai

La idea és recórrer tota la graella i calcular la distància de cada cel·la a l'1 més propera:

  • Si la cel·la conté 1, la seva distància és 0.
  • Si la cel·la conté 0, recorrem tota la graella per trobar la cel·la més propera que conté 1.
  • Per a cada cel·la 0 calcula la distància de Manhattan a totes les cel·les amb 1 i pren la distància mínima.

Emmagatzema aquesta distància mínima a la cel·la corresponent de la matriu de resultats. Repetiu per a totes les cel·les de la graella.

C++
    //Driver Code Starts   #include         #include          #include         using     namespace     std  ;   //Driver Code Ends      vector   <  vector   <  int  >>     nearest  (  vector   <  vector   <  int  >>     &  grid  )   {      int     n     =     grid  .  size  ();      int     m     =     grid  [  0  ].  size  ();      vector   <  vector   <  int  >>     ans  (  n       vector   <  int  >  (  m       INT_MAX  ));      // visit each cell of the grid      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )      {      // if the cell has 1      // then the distance is 0      if     (  grid  [  i  ][  j  ]     ==     1  )      {      ans  [  i  ][  j  ]     =     0  ;      continue  ;      }      // iterate over all the cells      // and find the distance of the nearest 1      for     (  int     k     =     0  ;     k      <     n  ;     k  ++  )      {      for     (  int     l     =     0  ;     l      <     m  ;     l  ++  )      {      if     (  grid  [  k  ][  l  ]     ==     1  )      {      ans  [  i  ][  j  ]     =     min  (  ans  [  i  ][  j  ]     abs  (  i     -     k  )     +     abs  (  j     -     l  ));      }      }      }      }      }      return     ans  ;   }      //Driver Code Starts   int     main  ()   {      vector   <  vector   <  int  >>     grid     =     {{  0       1       1       0  }     {  1       1       0       0  }     {  0       0       1       1  }};      vector   <  vector   <  int  >>     ans     =     nearest  (  grid  );      for     (  int     i     =     0  ;     i      <     ans  .  size  ();     i  ++  )      {      for     (  int     j     =     0  ;     j      <     ans  [  i  ].  size  ();     j  ++  )      {      cout      < <     ans  [  i  ][  j  ]      < <     ' '  ;      }      cout      < <     endl  ;      }      return     0  ;   }   //Driver Code Ends     Java   
    //Driver Code Starts   import     java.util.ArrayList  ;   class   GFG     {   //Driver Code Ends         static     ArrayList   <  ArrayList   <  Integer  >>  nearest  (  int  [][]     grid  )      {      int     n     =     grid  .  length  ;      int     m     =     grid  [  0  ]  .  length  ;      ArrayList   <  ArrayList   <  Integer  >     >     ans      =     new     ArrayList   <>  ();      // initialize all cells with maximum value      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      ArrayList   <  Integer  >     row     =     new     ArrayList   <>  ();      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )     {      row  .  add  (  Integer  .  MAX_VALUE  );      }      ans  .  add  (  row  );      }      // visit each cell of the grid      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )     {      // if the cell has 1 distance is 0      if     (  grid  [  i  ][  j  ]     ==     1  )     {      ans  .  get  (  i  ).  set  (  j       0  );      continue  ;      }      // iterate over all cells to find nearest 1      for     (  int     k     =     0  ;     k      <     n  ;     k  ++  )     {      for     (  int     l     =     0  ;     l      <     m  ;     l  ++  )     {      if     (  grid  [  k  ][  l  ]     ==     1  )     {      int     distance      =     Math  .  abs  (  i     -     k  )      +     Math  .  abs  (  j     -     l  );      if     (  distance       <     ans  .  get  (  i  ).  get  (  j  ))     {      ans  .  get  (  i  ).  set  (  j       distance  );      }      }      }      }      }      }      return     ans  ;      }      //Driver Code Starts      public     static     void     main  (  String  []     args  )      {      int  [][]     grid     =     {     {     0       1       1       0     }      {     1       1       0       0     }      {     0       0       1       1     }     };      ArrayList   <  ArrayList   <  Integer  >     >     ans     =     nearest  (  grid  );      for     (  ArrayList   <  Integer  >     row     :     ans  )     {      for     (  Integer     val     :     row  )     {      System  .  out  .  print  (  val     +     ' '  );      }      System  .  out  .  println  ();      }      }   }   //Driver Code Ends     Python   
    def   nearest  (  grid  ):   n   =   len  (  grid  )   m   =   len  (  grid  [  0  ])   ans   =   [[  float  (  'inf'  )]   *   m   for   _   in   range  (  n  )]   # visit each cell of the grid   for   i   in   range  (  n  ):   for   j   in   range  (  m  ):   # if the cell has 1   # then the distance is 0   if   grid  [  i  ][  j  ]   ==   1  :   ans  [  i  ][  j  ]   =   0   continue   # iterate over all the cells   # and find the distance of the nearest 1   for   k   in   range  (  n  ):   for   l   in   range  (  m  ):   if   grid  [  k  ][  l  ]   ==   1  :   ans  [  i  ][  j  ]   =   min  (  ans  [  i  ][  j  ]   abs  (  i   -   k  )   +   abs  (  j   -   l  ))   return   ans       #Driver Code Starts   if   __name__   ==   '__main__'  :   grid   =   [[  0     1     1     0  ]   [  1     1     0     0  ]   [  0     0     1     1  ]]   ans   =   nearest  (  grid  )   for   i   in   range  (  len  (  ans  )):   for   j   in   range  (  len  (  ans  [  i  ])):   print  (  ans  [  i  ][  j  ]   end  =  ' '  )   print  ()   #Driver Code Ends     C#   
    //Driver Code Starts   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {   //Driver Code Ends         static     List   <  List   <  int  >     >     nearest  (  int  [     ]     grid  )      {      int     n     =     grid  .  GetLength  (  0  );      int     m     =     grid  .  GetLength  (  1  );      List   <  List   <  int  >     >     ans     =     new     List   <  List   <  int  >     >  ();      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      List   <  int  >     row     =     new     List   <  int  >  ();      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )     {      row  .  Add  (  int  .  MaxValue  );      }      ans  .  Add  (  row  );      }      // Visit each cell of the grid      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )     {      // If the cell has 1 distance is 0      if     (  grid  [  i       j  ]     ==     1  )     {      ans  [  i  ][  j  ]     =     0  ;      continue  ;      }      // iterate over all the cells      // and find the distance of the nearest 1      for     (  int     k     =     0  ;     k      <     n  ;     k  ++  )     {      for     (  int     l     =     0  ;     l      <     m  ;     l  ++  )     {      if     (  grid  [  k       l  ]     ==     1  )     {      int     distance      =     Math  .  Abs  (  i     -     k  )      +     Math  .  Abs  (  j     -     l  );      if     (  distance      <     ans  [  i  ][  j  ])     {      ans  [  i  ][  j  ]     =     distance  ;      }      }      }      }      }      }      return     ans  ;      }      //Driver Code Starts      static     void     Main  ()      {      int  [     ]     grid     =     {     {     0       1       1       0     }      {     1       1       0       0     }      {     0       0       1       1     }     };      List   <  List   <  int  >     >     ans     =     nearest  (  grid  );      for     (  int     i     =     0  ;     i      <     ans  .  Count  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     ans  [  i  ].  Count  ;     j  ++  )     {      Console  .  Write  (  ans  [  i  ][  j  ]     +     ' '  );      }      Console  .  WriteLine  ();      }      }   }   //Driver Code Ends     JavaScript   
    function     nearest  (  grid  )   {      let     n     =     grid  .  length  ;      let     m     =     grid  [  0  ].  length  ;      let     ans     =     new     Array  (  n  );      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      ans  [  i  ]     =     new     Array  (  m  ).  fill  (  Infinity  );      }      // visit each cell of the grid      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     m  ;     j  ++  )     {      // if the cell has 1      // then the distance is 0      if     (  grid  [  i  ][  j  ]     ===     1  )     {      ans  [  i  ][  j  ]     =     0  ;      continue  ;      }      // iterate over all the cells      // and find the distance of the nearest 1      for     (  let     k     =     0  ;     k      <     n  ;     k  ++  )     {      for     (  let     l     =     0  ;     l      <     m  ;     l  ++  )     {      if     (  grid  [  k  ][  l  ]     ===     1  )     {      ans  [  i  ][  j  ]     =     Math  .  min  (      ans  [  i  ][  j  ]      Math  .  abs  (  i     -     k  )      +     Math  .  abs  (  j     -     l  ));      }      }      }      }      }      return     ans  ;   }      // Driver Code   //Driver Code Starts   let     grid     =      [     [     0       1       1       0     ]     [     1       1       0       0     ]     [     0       0       1       1     ]     ];   let     ans     =     nearest  (  grid  );   for     (  let     i     =     0  ;     i      <     ans  .  length  ;     i  ++  )     {      console  .  log  (  ans  [  i  ].  join  (  ' '  ));   }   //Driver Code Ends       
Sortida
1 0 0 1 0 0 1 1 1 1 0 0  

[Enfocament esperat] - Ús de la cerca d'amplada primer - O (n * m) temps i O (n * m) espai

El problema es pot resoldre de manera eficient mitjançant un enfocament BFS multifont. Cada cel·la de la quadrícula es tracta com un node amb vores que connecten cel·les adjacents (a dalt a baix, a l'esquerra, a la dreta). En lloc d'executar una cerca per separat per cada cel·la 0, posem a la cua totes les cel·les que contenen 1 al principi i realitzem un únic BFS a partir d'aquestes múltiples fonts simultàniament. A mesura que el BFS s'expandeix capa per capa, actualitzem la distància de cada cel·la 0 no visitada perquè sigui una més que la distància del seu pare. Això garanteix que cada cèl·lula rebi la distància mínima a l'1 més propera d'una manera òptima i eficient.

C++
    //Driver Code Starts   #include          #include      #include      #include      using     namespace     std  ;   //Driver Code Ends      vector   <  vector   <  int  >>     nearest  (  vector   <  vector   <  int  >>     &  grid  )     {      int     n     =     grid  .  size  ();      int     m     =     grid  [  0  ].  size  ();      vector   <  vector   <  int  >>     ans  (  n       vector   <  int  >  (  m       INT_MAX  ));      // to store the indices of the cells having 1      queue   <  pair   <  int       int  >>     q  ;      // visit each cell of the grid      for  (  int     i     =     0  ;     i   <  n  ;     i  ++  )     {      for  (  int     j     =     0  ;     j   <  m  ;     j  ++  )     {      // if the cell has 1       // then the distance is 0      if  (  grid  [  i  ][  j  ]     ==     1  )     {      ans  [  i  ][  j  ]     =     0  ;      q  .  push  ({  i       j  });      }      }      }      // iterate over all the cells      // and find the distance of the nearest 1      while  (  !  q  .  empty  ())     {      int     len     =     q  .  size  ();          for  (  int     i     =     0  ;     i   <  len  ;     i  ++  )     {      int     x     =     q  .  front  ().  first  ;      int     y     =     q  .  front  ().  second  ;      q  .  pop  ();      // check all the four directions      vector   <  vector   <  int  >>     directions     =         {{  0       1  }     {  0       -1  }     {  1       0  }     {  -1       0  }};      for     (  int     j     =     0  ;     j      <     directions  .  size  ();     j  ++  )     {      int     dx     =     directions  [  j  ][  0  ];      int     dy     =     directions  [  j  ][  1  ];      // if the cell is within the grid       // and the distance is not calculated yet      if     (  x  +  dx     >=     0     &&     x  +  dx      <     n     &&     y  +  dy     >=     0     &&         y  +  dy      <     m     &&     ans  [  x  +  dx  ][  y  +  dy  ]     ==     INT_MAX  )     {      ans  [  x  +  dx  ][  y  +  dy  ]     =     ans  [  x  ][  y  ]     +     1  ;      q  .  push  ({  x  +  dx       y  +  dy  });      }      }      }      }      return     ans  ;   }      //Driver Code Starts   int     main  ()     {      vector   <  vector   <  int  >>     grid     =     {{  0    1    1    0  }     {  1    1    0    0  }     {  0    0    1    1  }};      vector   <  vector   <  int  >>     ans     =     nearest  (  grid  );      for     (  int     i     =     0  ;     i      <     ans  .  size  ();     i  ++  )     {      for     (  int     j     =     0  ;     j      <     ans  [  i  ].  size  ();     j  ++  )     {      cout      < <     ans  [  i  ][  j  ]      < <     ' '  ;      }      cout      < <     endl  ;      }      return     0  ;   }   //Driver Code Ends     Java   
    //Driver Code Starts   import     java.util.ArrayList  ;   import     java.util.Queue  ;   import     java.util.LinkedList  ;   import     java.util.Arrays  ;   class   GfG     {   //Driver Code Ends         static     ArrayList   <  ArrayList   <  Integer  >>     nearest  (  int  [][]     grid  )     {      int     n     =     grid  .  length  ;      int     m     =     grid  [  0  ]  .  length  ;      int  [][]     ans     =     new     int  [  n  ][  m  ]  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      Arrays  .  fill  (  ans  [  i  ]       Integer  .  MAX_VALUE  );      }      // to store the indices of the cells having 1      Queue   <  int  []>     q     =     new     LinkedList   <>  ();      // visit each cell of the grid      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )     {      // if the cell has 1       // then the distance is 0      if     (  grid  [  i  ][  j  ]     ==     1  )     {      ans  [  i  ][  j  ]     =     0  ;      q  .  add  (  new     int  []  {  i       j  });      }      }      }      // iterate over all the cells      // and find the distance of the nearest 1      while     (  !  q  .  isEmpty  ())     {      int     len     =     q  .  size  ();      for     (  int     i     =     0  ;     i      <     len  ;     i  ++  )     {      int  []     front     =     q  .  poll  ();      int     x     =     front  [  0  ]  ;      int     y     =     front  [  1  ]  ;      // check all the four directions      int  [][]     directions     =     {{  0       1  }     {  0       -  1  }     {  1       0  }     {  -  1       0  }};      for     (  int     j     =     0  ;     j      <     directions  .  length  ;     j  ++  )     {      int     dx     =     directions  [  j  ][  0  ]  ;      int     dy     =     directions  [  j  ][  1  ]  ;      // if the cell is within the grid       // and the distance is not calculated yet      if     (  x     +     dx     >=     0     &&     x     +     dx      <     n     &&     y     +     dy     >=     0     &&     y     +     dy      <     m      &&     ans  [  x     +     dx  ][  y     +     dy  ]     ==     Integer  .  MAX_VALUE  )     {      ans  [  x     +     dx  ][  y     +     dy  ]     =     ans  [  x  ][  y  ]     +     1  ;      q  .  add  (  new     int  []  {  x     +     dx       y     +     dy  });      }      }      }      }      ArrayList   <  ArrayList   <  Integer  >>     result     =     new     ArrayList   <>  ();      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      ArrayList   <  Integer  >     row     =     new     ArrayList   <>  ();      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )     {      row  .  add  (  ans  [  i  ][  j  ]  );      }      result  .  add  (  row  );      }      return     result  ;      }      //Driver Code Starts      public     static     void     main  (  String  []     args  )     {      int  [][]     grid     =     {{  0    1    1    0  }     {  1    1    0    0  }     {  0    0    1    1  }};      ArrayList   <  ArrayList   <  Integer  >>     ans     =     nearest  (  grid  );      for     (  ArrayList   <  Integer  >     row     :     ans  )     {      for     (  int     val     :     row  )     {      System  .  out  .  print  (  val     +     ' '  );      }      System  .  out  .  println  ();      }      }   }   //Driver Code Ends     Python   
    #Driver Code Starts   from   collections   import   deque   import   sys   #Driver Code Ends      def   nearest  (  grid  ):   n   =   len  (  grid  )   m   =   len  (  grid  [  0  ])   ans   =   [[  sys  .  maxsize   for   _   in   range  (  m  )]   for   _   in   range  (  n  )]   # to store the indices of the cells having 1   q   =   deque  ()   # visit each cell of the grid   for   i   in   range  (  n  ):   for   j   in   range  (  m  ):   # if the cell has 1    # then the distance is 0   if   grid  [  i  ][  j  ]   ==   1  :   ans  [  i  ][  j  ]   =   0   q  .  append  ((  i     j  ))   # iterate over all the cells   # and find the distance of the nearest 1   while   q  :   len_q   =   len  (  q  )   for   _   in   range  (  len_q  ):   x     y   =   q  .  popleft  ()   # check all the four directions   directions   =   [(  0     1  )   (  0     -  1  )   (  1     0  )   (  -  1     0  )]   for   dx     dy   in   directions  :   # if the cell is within the grid    # and the distance is not calculated yet   if   0    <=   x   +   dx    <   n   and   0    <=   y   +   dy    <   m   and   ans  [  x   +   dx  ][  y   +   dy  ]   ==   sys  .  maxsize  :   ans  [  x   +   dx  ][  y   +   dy  ]   =   ans  [  x  ][  y  ]   +   1   q  .  append  ((  x   +   dx     y   +   dy  ))   return   ans      #Driver Code Starts   if   __name__   ==   '__main__'  :   grid   =   [[  0    1    1    0  ]   [  1    1    0    0  ]   [  0    0    1    1  ]]   ans   =   nearest  (  grid  )   for   row   in   ans  :   print  (  ' '  .  join  (  map  (  str     row  )))   #Driver Code Ends     C#   
    //Driver Code Starts   using     System  ;   using     System.Collections.Generic  ;   class     GFG   {   //Driver Code Ends         static     List   <  List   <  int  >>     nearest  (  int  []     grid  )      {      int     n     =     grid  .  GetLength  (  0  );      int     m     =     grid  .  GetLength  (  1  );      int  []     ans     =     new     int  [  n       m  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )      {      ans  [  i       j  ]     =     int  .  MaxValue  ;      }      }      // to store the indices of the cells having 1      Queue   <  Tuple   <  int       int  >>     q     =     new     Queue   <  Tuple   <  int       int  >>  ();      // visit each cell of the grid      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )      {      // if the cell has 1       // then the distance is 0      if     (  grid  [  i       j  ]     ==     1  )      {      ans  [  i       j  ]     =     0  ;      q  .  Enqueue  (  new     Tuple   <  int       int  >  (  i       j  ));      }      }      }      // iterate over all the cells      // and find the distance of the nearest 1      while     (  q  .  Count     >     0  )      {      int     len     =     q  .  Count  ;      for     (  int     i     =     0  ;     i      <     len  ;     i  ++  )      {      var     node     =     q  .  Dequeue  ();      int     x     =     node  .  Item1  ;      int     y     =     node  .  Item2  ;      // check all the four directions      int  []     directions     =     new     int  []      {      {  0       1  }      {  0       -  1  }      {  1       0  }      {  -  1       0  }      };      for     (  int     j     =     0  ;     j      <     4  ;     j  ++  )      {      int     dx     =     directions  [  j       0  ];      int     dy     =     directions  [  j       1  ];      // if the cell is within the grid       // and the distance is not calculated yet      if     (  x     +     dx     >=     0     &&     x     +     dx      <     n     &&     y     +     dy     >=     0     &&     y     +     dy      <     m     &&     ans  [  x     +     dx       y     +     dy  ]     ==     int  .  MaxValue  )      {      ans  [  x     +     dx       y     +     dy  ]     =     ans  [  x       y  ]     +     1  ;      q  .  Enqueue  (  new     Tuple   <  int       int  >  (  x     +     dx       y     +     dy  ));      }      }      }      }      // Convert 2D array to List > before returning      List   <  List   <  int  >>     result     =     new     List   <  List   <  int  >>  ();      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      {      List   <  int  >     row     =     new     List   <  int  >  ();      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )      {      row  .  Add  (  ans  [  i       j  ]);      }      result  .  Add  (  row  );      }      return     result  ;      }      //Driver Code Starts      static     void     Main  ()      {      int  []     grid     =     new     int  []      {      {  0       1       1       0  }      {  1       1       0       0  }      {  0       0       1       1  }      };      List   <  List   <  int  >>     ans     =     nearest  (  grid  );      for     (  int     i     =     0  ;     i      <     ans  .  Count  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <     ans  [  i  ].  Count  ;     j  ++  )      {      Console  .  Write  (  ans  [  i  ][  j  ]     +     ' '  );      }      Console  .  WriteLine  ();      }      }   }   //Driver Code Ends     JavaScript   
    //Driver Code Starts   const     Denque     =     require  (  'denque'  );   //Driver Code Ends      function     nearest  (  grid  )     {      let     n     =     grid  .  length  ;      let     m     =     grid  [  0  ].  length  ;      // Initialize answer matrix with Infinity      let     ans     =     [];      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      ans  .  push  (  new     Array  (  m  ).  fill  (  Infinity  ));      }      // to store the indices of the cells having 1      let     q     =     new     Denque  ();      // visit each cell of the grid      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     m  ;     j  ++  )     {      // if the cell has 1       // then the distance is 0      if     (  grid  [  i  ][  j  ]     ===     1  )     {      ans  [  i  ][  j  ]     =     0  ;      q  .  push  ([  i       j  ]);      }      }      }      // iterate over all the cells      // and find the distance of the nearest 1      while     (  !  q  .  isEmpty  ())     {      let     [  x       y  ]     =     q  .  shift  ();      // check all the four directions      let     directions     =     [      [  0       1  ]      [  0       -  1  ]      [  1       0  ]      [  -  1       0  ]      ];      for     (  let     dir     of     directions  )     {      let     dx     =     dir  [  0  ];      let     dy     =     dir  [  1  ];      // if the cell is within the grid       // and the distance is not calculated yet      if     (  x     +     dx     >=     0     &&     x     +     dx      <     n     &&     y     +     dy     >=     0     &&     y     +     dy      <     m     &&     ans  [  x     +     dx  ][  y     +     dy  ]     ===     Infinity  )     {      ans  [  x     +     dx  ][  y     +     dy  ]     =     ans  [  x  ][  y  ]     +     1  ;      q  .  push  ([  x     +     dx       y     +     dy  ]);      }      }      }      return     ans  ;   }      //Driver Code Starts   // Driver Code   let     grid     =     [      [  0       1       1       0  ]      [  1       1       0       0  ]      [  0       0       1       1  ]   ];   let     ans     =     nearest  (  grid  );   for     (  let     i     =     0  ;     i      <     ans  .  length  ;     i  ++  )     {      console  .  log  (  ans  [  i  ].  join  (  ' '  ));   }   //Driver Code Ends       
Sortida
1 0 0 1 0 0 1 1 1 1 0 0  
Crea un qüestionari