Variables aleatòries binomials
En aquesta publicació parlarem de les variables aleatòries binomials.
Requisit previ: Variables aleatòries
Un tipus específic de discret variable aleatòria que compta amb quina freqüència es produeix un esdeveniment concret en un nombre fix d'assaigs o assaigs.
Perquè una variable sigui una variable aleatòria binomial s'han de complir TOTES les condicions següents:
- Hi ha un nombre fix d'assaigs (una mida de mostra fixa).
- En cada assaig l'esdeveniment d'interès es produeix o no.
- La probabilitat d'ocurrència (o no) és la mateixa en cada assaig.
- Els assajos són independents els uns dels altres.
Notacions matemàtiques
n = number of trials
p = probability of success in each trial
k = number of success in n trials
Ara intentem esbrinar la probabilitat d'èxit de k en n proves.
Aquí la probabilitat d'èxit en cada assaig és p independent d'altres assaigs.
Per tant, primer escollim k proves en què hi haurà un èxit i en la resta n-k proves hi haurà un fracàs. Nombre de maneres de fer-ho és
![]()
Com que tots els n esdeveniments són independents, la probabilitat d'èxit de k en n proves és equivalent a la multiplicació de la probabilitat per a cada assaig.
Aquí hi ha k èxit i n-k fracassos Així que la probabilitat de cada manera d'aconseguir k èxit i n-k fracàs és
![]()
Per tant, la probabilitat final és
(number of ways to achieve k success
and n-k failures)
*
(probability for each way to achieve k
success and n-k failure)
Aleshores, la probabilitat de la variable aleatòria binomial ve donada per:
![]()
Sigui X una variable aleatòria binomial amb el nombre de proves n i la probabilitat d'èxit en cada assaig sigui p.
El nombre d'èxits esperat ve donat per
E[X] = np
La variació del nombre d'èxits ve donada per
Var[X] = np(1-p)
Exemple 1 : Considereu un experiment aleatori en el qual es llança una moneda esbiaixada (probabilitat de cap = 1/3) 10 vegades. Troba la probabilitat que el nombre de caps que apareguin sigui 5.
Solució:
Let X be binomial random variable
with n = 10 and p = 1/3
P(X=5) = ?![]()
![]()
Aquí teniu la implementació del mateix
C++
Java// C++ program to compute Binomial Probability #include#include using namespace std ; // function to calculate nCr i.e. number of // ways to choose r out of n objects int nCr ( int n int r ) { // Since nCr is same as nC(n-r) // To decrease number of iterations if ( r > n / 2 ) r = n - r ; int answer = 1 ; for ( int i = 1 ; i <= r ; i ++ ) { answer *= ( n - r + i ); answer /= i ; } return answer ; } // function to calculate binomial r.v. probability float binomialProbability ( int n int k float p ) { return nCr ( n k ) * pow ( p k ) * pow ( 1 - p n - k ); } // Driver code int main () { int n = 10 ; int k = 5 ; float p = 1.0 / 3 ; float probability = binomialProbability ( n k p ); cout < < 'Probability of ' < < k ; cout < < ' heads when a coin is tossed ' < < n ; cout < < ' times where probability of each head is ' < < p < < endl ; cout < < ' is = ' < < probability < < endl ; } Python3// Java program to compute Binomial Probability import java.util.* ; class GFG { // function to calculate nCr i.e. number of // ways to choose r out of n objects static int nCr ( int n int r ) { // Since nCr is same as nC(n-r) // To decrease number of iterations if ( r > n / 2 ) r = n - r ; int answer = 1 ; for ( int i = 1 ; i <= r ; i ++ ) { answer *= ( n - r + i ); answer /= i ; } return answer ; } // function to calculate binomial r.v. probability static float binomialProbability ( int n int k float p ) { return nCr ( n k ) * ( float ) Math . pow ( p k ) * ( float ) Math . pow ( 1 - p n - k ); } // Driver code public static void main ( String [] args ) { int n = 10 ; int k = 5 ; float p = ( float ) 1.0 / 3 ; float probability = binomialProbability ( n k p ); System . out . print ( 'Probability of ' + k ); System . out . print ( ' heads when a coin is tossed ' + n ); System . out . println ( ' times where probability of each head is ' + p ); System . out . println ( ' is = ' + probability ); } } /* This code is contributed by Mr. Somesh Awasthi */C## Python3 program to compute Binomial # Probability # function to calculate nCr i.e. # number of ways to choose r out # of n objects def nCr ( n r ): # Since nCr is same as nC(n-r) # To decrease number of iterations if ( r > n / 2 ): r = n - r ; answer = 1 ; for i in range ( 1 r + 1 ): answer *= ( n - r + i ); answer /= i ; return answer ; # function to calculate binomial r.v. # probability def binomialProbability ( n k p ): return ( nCr ( n k ) * pow ( p k ) * pow ( 1 - p n - k )); # Driver code n = 10 ; k = 5 ; p = 1.0 / 3 ; probability = binomialProbability ( n k p ); print ( 'Probability of' k 'heads when a coin is tossed' end = ' ' ); print ( n 'times where probability of each head is' round ( p 6 )); print ( 'is = ' round ( probability 6 )); # This code is contributed by mitsJavaScript// C# program to compute Binomial // Probability. using System ; class GFG { // function to calculate nCr // i.e. number of ways to // choose r out of n objects static int nCr ( int n int r ) { // Since nCr is same as // nC(n-r) To decrease // number of iterations if ( r > n / 2 ) r = n - r ; int answer = 1 ; for ( int i = 1 ; i <= r ; i ++ ) { answer *= ( n - r + i ); answer /= i ; } return answer ; } // function to calculate binomial // r.v. probability static float binomialProbability ( int n int k float p ) { return nCr ( n k ) * ( float ) Math . Pow ( p k ) * ( float ) Math . Pow ( 1 - p n - k ); } // Driver code public static void Main () { int n = 10 ; int k = 5 ; float p = ( float ) 1.0 / 3 ; float probability = binomialProbability ( n k p ); Console . Write ( 'Probability of ' + k ); Console . Write ( ' heads when a coin ' + 'is tossed ' + n ); Console . Write ( ' times where ' + 'probability of each head is ' + p ); Console . Write ( ' is = ' + probability ); } } // This code is contributed by nitin mittal.PHP< script > // Javascript program to compute Binomial Probability // function to calculate nCr i.e. number of // ways to choose r out of n objects function nCr ( n r ) { // Since nCr is same as nC(n-r) // To decrease number of iterations if ( r > n / 2 ) r = n - r ; let answer = 1 ; for ( let i = 1 ; i <= r ; i ++ ) { answer *= ( n - r + i ); answer /= i ; } return answer ; } // function to calculate binomial r.v. probability function binomialProbability ( n k p ) { return nCr ( n k ) * Math . pow ( p k ) * Math . pow ( 1 - p n - k ); } // driver program let n = 10 ; let k = 5 ; let p = 1.0 / 3 ; let probability = binomialProbability ( n k p ); document . write ( 'Probability of ' + k ); document . write ( ' heads when a coin is tossed ' + n ); document . write ( ' times where probability of each head is ' + p ); document . write ( ' is = ' + probability ); // This code is contributed by code_hunt. < /script>// php program to compute Binomial // Probability // function to calculate nCr i.e. // number of ways to choose r out // of n objects function nCr ( $n $r ) { // Since nCr is same as nC(n-r) // To decrease number of iterations if ( $r > $n / 2 ) $r = $n - $r ; $answer = 1 ; for ( $i = 1 ; $i <= $r ; $i ++ ) { $answer *= ( $n - $r + $i ); $answer /= $i ; } return $answer ; } // function to calculate binomial r.v. // probability function binomialProbability ( $n $k $p ) { return nCr ( $n $k ) * pow ( $p $k ) * pow ( 1 - $p $n - $k ); } // Driver code $n = 10 ; $k = 5 ; $p = 1.0 / 3 ; $probability = binomialProbability ( $n $k $p ); echo 'Probability of ' . $k ; echo ' heads when a coin is tossed ' . $n ; echo ' times where probability of ' . 'each head is ' . $p ; echo ' is = ' . $probability ; // This code is contributed by nitin mittal. ?>Sortida:
Probability of 5 heads when a coin is tossed 10 times where probability of each head is 0.333333
is = 0.136565Crea un qüestionari